|
|
|
|
|
SOFTWARE TECHNOLOGY MATURITY MODELS
|
Mehmet Aksit University of Twente The Netherlands
|
Brief Bio
Mehmet Aksit holds an M.Sc. degree from the Eindhoven University of Technology and a Ph.D. degree from the University of Twente. Currently, he is working as a full professor at the Department of Computer Science, University of Twente and affiliated with the institute Centre for Telematics and Information Technology. He has served many conferences and symposia. For example, he was the program (co) chair of ECOOP'97, SACT'00, HQSAD'00, NoD'02 and AOSD2003. He was the tutorial chair of the ECOOP'92 conference and the organizing chair of the AOSD'02 conference. He has been also serving as a program committee member of many international conferences and as a reviewer of several journals. He is the co-founder and has been the co-editor in chief of Transactions on Aspect-Oriented Software Development (published by Springer-Verlag) until March 2007. Currently, he is at the editorial board of this journal. He has organized special journal issues as a co-guest editor on topics such as “Computational Intelligence in software engineering”, “Auto-adaptable systems”, “Model Driven Architecture”. In addition, since 1988, he has been serving as a reviewer of various European projects. He has given numerous invited presentations and keynote talks. Examples in 2008 are keynote talks in Software Composition conference in Budapest, Aspect-Oriented Modeling workshop in Brussels, Informatics conference in Cesme, Software Quality and Tools Conference in Istanbul, Sysem Integration Conference in Brasilia. He is the co-founder of Aspect-oriented association, where he has served as the steering committee member until March 2008. He is the steering committee member of AITO, which organizes the ECOOP conference series. He is the steering committee member of the Turkish Software Architecture Group, which organizes National conferences on this topic. Since 1990, he has given more than 110 international and in-company courses and conference tutorials mainly in the Netherlands, but also in Canada, Denmark, France, Germany, Hungary, Ireland, Italy, Portugal, Spain, Sweden, Switzerland, Turkey and in the United States. For more than 10 years long, he has received (one of) the highest evaluations for the courses given for the post-academic organization (PAO-Informatica). He has organized special training programs for a number of multi-national companies, where he trained hundreds of software designers and architects. As a visiting scientist, in 1989 he was at the IBM T. J. Watson Research Laboratory, New York, in 1993 at the University of Tokyo, and in 1994 at the New Jersey Institute of Technology. He has been involved in the design and implementation of many software systems. When he was working for Océ Nederland from 1981 – 1982 and 1983 - 1987, first he worked on image processing and coding techniques to be used in digital copiers. Later he worked on office system software. After moving to the University of Twente in 1987, he has been involved in many practical projects and designed various large-scale software architectures, which some of them are currently being utilized in products. Some of the research tools developed by the chair are now being used in some industrial applications. He has served as a consultant for large organizations such as in 2006 the Dutch Ministry of Traffic where he has evaluated large-scale applications of software systems managing traffic-flow. Also, in 2007 he has served the Dutch Tax office by giving consultancy and training.
Abstract
From enterprise systems to embedded systems, software is the key enabling force of today’s businesses. Although this fact is recognized by the current business and technology managers, the complexities that come along with software, and how to deal with these, are hardly understood. This is mostly because software is “invisible” and the professional skills that are required to deal with complex software are generally unknown to the management. For this reason, software system development is largely considered as a bunch of coding activity plus some nasty process management. The businesses that are willing to apply the maturity models such as CMMI mainly focus on the processes without being conscious about the depth of the required solution techniques. The increased emphasis on architectures is mostly limited to considering the enabling technologies in system realization. On the other hand, the language of the researchers in computer science are unintelligible to the technical managers. We believe that the so called software crisis is partly created due to the above listed problems. To address these challenges, we will first identify the so-called key quality and technology domains. Then we will introduce the concept of technology maturity models. A technology maturity model identifies the advancements an organization may master in due time within a key technology domain through adoption of increasingly more advanced and beneficial state-of-the-art methods, techniques and tools. Finally we will conclude the talk by emphasizing the advantages of adopting the software technology maturity models for creating successful businesses.
|
BUSINESS MODELING AS FOUNDATION IN DEVELOPING DATA MINING TOOLS: CASE OF AUTOMOBILE WARRANTY DATA
|
Dimitar Christozov American University in Bulgaria Bulgaria
|
Brief Bio
Dimitar Christozov is a Professor of Computer Science at the American University in Bulgaria, Blagoevgrad 2700, Bulgaria since 1993 and at the University of Library Studies and Information Technologies since 2002. He has more than 30 years of research and education experience in areas as computer science, applied statistics, information systems. His recent interests are in the field of business intelligence and data mining. He graduated Mathematics from Sofia University “St. Kliment Ohridski” in 1979. He completed his PhD thesis “Computer Aided Evaluation of Machine Reliability” in 1986. and DSc thesis “Quantitative measures of the quality of informing” in 2009. In ICTT “Informa” (1986-1993) Dr. Christozov was involved in establishing the national information network for technology transfer and research in the areas of technologies assessment, integral quality measures and information systems for quality management. In these areas he was recognized as one of the leading experts in Bulgaria. At the American University in Bulgaria, he was the leading person in curriculum development, launching and development of the majors of Computer Science (1993) and Information Systems (2008). At the University of Library Studies and Information Technologies he proposed and implemented the major of Information Brokerage. Professor Christozov has more than 80 publications as separate volume, journal papers and papers in refereed proceedings. He is a founding member of Informing Science Institute and chair of Bulgarian Informing Science Society; and founding member of the Bulgarian Statistical Society and the Bulgarian Telework Association.
Abstract
Using business models is essential for successful contemporary management. A model represents understanding about the real life domain and reflects its essential traits. Another characteristic of today’s management is availability of huge amount of accessible and searchable data accumulated over executing business activities. Exploring those data to increase domain understanding and to build models, which further can be used to support decision making is the essential task of the emerging area of Business Intelligence and especially Data Mining. The process of modeling based on business data analysis to build decision support tools is discussed via sharing the experience acquired in a data mining project. The project aimed discovering factors influencing the warranty cost in automobile industry. The warrant data analysis has to serve for solving two different tasks: (i) Design of warranty policy. Warranty is an important marketing tool, used to share the risk of failures between all customers. This share is included into the product’s price. Also, warranty is an important advertising and promotional tool – warranty coverage encourages the customers to purchase the product. In its both purposes, the warranty policy requires careful analysis related to the cost, which influence pricing and overall marketing policy. (ii) Increase the reliability of cars. Warranty data contains information about the most common problems leading to failures. Warranty analysis helps to identify priorities and directions of improvement the products. Or how to improve the cars and to reduce the warranty cost. An iterative research process of developing and exploring models to facilitate data analysis is presented. The process includes the following phase: Data collection; data research; modeling; defining analytical procedures to expose the discovered patterns; development software tools to support use of the analytical procedures. Interpretation of discovered patterns provides the necessary arguments in design of software tools for regular ongoing business analysis to support decision making. The applied methodology represents a good practice in specifying, designing and implementing components of a data mining application.
|
BUSINESS MODELLING FOR SOFTWARE BASED SERVICES
|
Bart Nieuwenhuis University of Twente The Netherlands
|
Brief Bio
Bart Nieuwenhuis is part-time professor at the School of Management and Governance at the University of Twente. He is member of the Research Group Information Systems and Change Management (ICMS), holding the chair in QoS of Telematics Systems. He is working as advisor and consultant for his own consultancy firm K4B Innovation. His research focuses on generic service provisioning platforms including Quality of Service mechanisms. Application domains comprise telemedicine as well as billing and payment services. His research interests include service innovation and business modelling. Bart Nieuwenhuis supervises PhD students and publishes scientific articles and conference papers on services provisioning platforms and middleware technologies for Quality of Service and Context Awareness. Bart Nieuwenhuis is chairman of the innovation-driven research programme Generic Communication, part of R&D programmes funded by the Ministry of Economic Affaires. For K4B Innovation, Bart Nieuwenhuis works as an advisor to The Netherlands ICT Research and Innovation Authority. He is the managing director of Exser, the center of service innovation in The Netherlands, founded in 2008. In this center private companies, academic institutions and governmental organization co-operate in order to realise open innovation initiatiatives. The centre is sponsored by various large, innovative service companies and governmental organizations in The Netherlands. Before joining the ISCM group, Bart Nieuwenhuis was part-time full professor at the Architecture and Services of Network Applications (ASNA) group within the Faculty of Electrical Engineering, Mathematics & Computer Science (EEMCS) of the University of Twente. He joined the ASNA group in Twente after a period of five years at the University of Groningen, where he was Tele-Informatics professor at the Computer Science Faculty. Before starting his own company, he worked more than 20 years for KPN Research, the R&D facility of KPN, the telephony and Internet market leader in The Netherlands. He served as manager of R&D departments and Head of Strategy of KPN Research. Bart Nieuwenhuis worked on behalf of KPN for the European Institute for Research and Strategic Studies in Telecommunications (EURESCOM) in Heidelberg and was leader of various international, cooperative projects of European public network operators. Bart Nieuwenhuis holds a PhD in Computer Science and a MSc (cum laude) and BSc in Electrical Engineering, all from the University of Twente.
Abstract
During the 1970s the business model concept was used for describing IT-related business processes. More recently, the business model concept is used for analysing market structures as well as strategic choices related to positioning of organisations within these market structures. Organisations commercialise new ideas and technologies through their business models. The business model design can be seen as a key decision for new firm entrepreneurs. The research field is still lacking a common and general accepted definition of a business model. Chesbrough and Rosenbloom define a business model as ‘a blueprint for how a network of organisations cooperates in creating and capturing value from technological innovation’. Essentially, a business model can be seen as a definition of the manner by which an organisation delivers value to customers, entices them to pay for value and converts those payments to profit. Initially, attention has been paid to empirically defining business model typologies. In recent years, business model research started focusing on exploring business model components and developing descriptive models. Osterwalder and Pigneur use a decomposition consisting of nine components: value proposition, customer segments, client relationships, distribution channels and revenue flows on one hand and key activities, key resources, cost structure, partner network on the other hand. These models can also be used to develop business models for software-based products and services. Software can be part of a tangible product that is being paid for by customers. Due to developments such as Application Service Provisioning (ASP), Software as a Service (SaaS) and more recently Cloud Computing, software is more and more the essential building block of services sold to customers. Due to these developments, a business model design process heading for delivering new experiences to customers is guiding the software development process. The state in which the business modelling field finds itself can be characterized as the pre-scientific chaos(Kuhn): there are several competing schools of thought, and progress is limited because of a lack of cumulative progress. Because of this, there are no clear and unique semantics in the research related to business models. During the last years we have been researching business models and are investigating possibilities to apply well-known engineering principles for this application field. We present a business modelling approach as well as some software business modelling cases.
|
WE HAVE SEEN NOTHING YET
|
Hermann Maurer Graz University of Technology Austria
|
Brief Bio
Dr. Hermann Maurer is Professor Emeritus at Graz University of Technology. He started his career at the University of Calgary as Assistant and Associate Professor, was appointed full professor at Karlsruhe just before he turned 30, and has been now Professor and Dean in Computer Science at Graz University of Technology since 1978, with some interruptions, like guest-professorships of more than a year at Denver University, University of Auckland, and shorter visits to Edith Cowan University in Perth, SMU in Dallas, Waterloo, Brasilia and others. Chair of the Informatics Section of Academia Europaea, "The Academy of Europe" since April 2009, and receiver of many national and international distinctions, Professor Maurer is author of over 650 papers and 20 books, founder of a number of companies, supervised some 60 Ph.D. and over 400 M.Sc. students and was leader of numerous multimillion Euro projects. More about him than you ever want to read under http://www.iicm.tugraz.at/maurer.
Abstract
I will first present some unusual arguments that will show that we are not in for small changes in the near future, but for massive restructuring of how we live, think and learn. I will then explain in what way the strong convergence of cell phones and PCs is likely to develop. I will show clips of protoypes of new devices that overcome the small screen-size of cell phones and their small keyboards. I will then explain how dramatically this will change society and education: we will have with us a permanent powerful assistant. This brings both great benefits and great dangers. I will also address the issue whether large amounts of information help us or rather brainwash us and influence our decision making in a negative way. I will show at least one example that will surprise the audience. I will then argue that no matter how much one is using modern information technology oneself, one does not react the same way when compared to "digital natives", i.e. people (like our students in university) that have grown up in such new environments. I will report on two surprising recent experiments that seem to prove this point conclusively. Finally, I show that the statement we always hear that the value of technology is ambivalent (like "a hammer can be used to drive in a nail or to kill a person by hitting the head") is not even close to the truth. Rather, some technologies are inherently good, others inherently bad, and many in between. I will present a number of examples to verify this provocative idea and show how computers and networks are classified if one looks at them that way.
|
|
|
|
|