BMSD 2014

Fourth International Symposium on

Business Modeling and Software Design

Proceedings

Luxembourg, Grand Duchy of Luxembourg « 24-26 June 2014

Organized by: In Collaboration with: Cooperating Organizations:

Jjlerest tUDOr ks

PUBLIC RESEARCH CENTRE HENRI TUDOR

BMSD 2014

Proceedings of the
Fourth International Symposium on
Business Modeling and Software Design

Luxembourg, Grand Duchy of Luxembourg

24-26 June 2014

Organized by
IICREST - Interdisciplinary Institute for Collaboration and Research on
Enterprise Systems and Technology

In Collaboration with
TUDOR - Public Research Centre Henri Tudor

Cooperating Organizations:
SIKS - the Dutch Research School for Information and Knowledge Systems

AUTH - Aristotle University of Thessaloniki
CTIT - Center for Telematics and Information Technology
AMAKOTA Ltd.

Copyright © 2014 SCITEPRESS - Science and Technology Publications
All rights reserved

Edited by Boris Shishkov

Graphics Production by Bozhana Yankova

Compiled in Portugal

Printed in Bulgaria

ISBN: 978-989-758-032-1

Deposito Legal: 374971/14

http://www.is-bmsd.org

secretariat@iicrest.org

II

BRIEF CONTENTS

KEYNOTE SPEAKERSeeuttiitintieeieesiteette st et esite et e stee st esate et esaeesteesiteeabeesseesabeesateenseesseesaneens v
CHAIR AND PROGRAM COMMITTEEc.uutiiitetieniteeieeniteeteesitesteesiteeieesseesseesiseebeesseesseessseenneenane \%
BEST PAPERS SELECTIONctiiuttteiitteeniiteesitee et ee ettt e ettt e ettt e stteesbteesbteesaseeesaneeesabeeesabeeesaneeenans VIII
FOREWORD......cuttiiiiiiiiiteite ettt ettt ettt ettt ettt e sttt e s et e st e s bt e e e bt e e saneeeaneesnneeeas IX
CONTENTS ..ttt ettt ettt ettt ettt e b e e et e bt e st e e bt e eab e e bt e e a bt e ebe e e st e e bt e et e e nbbeeabeesseeeabeenabeenbeenaee X1

III

KEYNOTE SPEAKERS

Henderik Proper
Public Research Centre Henri Tudor

Grand Duchy of Luxembourg

Roel Wieringa
University of Twente

The Netherlands

v

CHAIR AND PROGRAM COMMITTEE

Boris Shishkov, [ICREST, Bulgaria

PROGRAM COMMITTEE

Hamideh Afsarmanesh, University of Amsterdam,

The Netherlands

Marco Aiello, University of Groningen, The

Netherlands

Mehmet Aksit, University of Twente, The
Netherlands

Antonia Albani, University of St. Gallen,

Switzerland

Ognyan Andreev, Technical University of Sofia,

Bulgaria

Paulo Anita, Delft University of Technology, The
Netherlands

Rumen Arnaudov, Technical University of Sofia,

Bulgaria

Colin Atkinson, University of Mannheim, Germany

Paris Avgeriou, University of Groningen, The

Netherlands

Csaba Boer, TBA, The Netherlands

Boyan Bontchev, Sofia University St. Kliment
Ohridski, Bulgaria

Frances Brazier, Delft University of Technology,

The Netherlands

Barrett Bryant, University of North Texas, USA

Cinzia Cappiello, Politecnico di Milano, Italy

Jorge Cardoso, University of Coimbra, Portugal

Kuo-Ming Chao, Coventry University, UK

Ruzanna Chitchyan, University of Leicester, UK

Samuel Chong, Capgemini, UK

Dimitar Christozov, American University in

Bulgaria - Blagoevgrad, Bulgaria

José Cordeiro, Polytechnic Institute of Settibal,
Portugal

Dumitru Dan Burdescu, University of Craiova,

Romania

Joop De Jong, University of Applied Sciences
Utrecht, The Netherlands

Jan L. G. Dietz, Delft University of Technology,
The Netherlands

Teduh Dirgahayu, Universitas Islam Indonesia,

Indonesia

Lyubka Doukovska, Bulgarian Academy of

Sciences, Bulgaria

Chiara Francalanci, Politecnico di Milano, Italy

PROGRAM COMMITTEE (CONT.)

Boris Fritscher, University of Lausanne, Switzerland

J. Paul Gibson, T&MSP - Telecom & Management

SudParis, France

Arash Golnam, EPFL, Switzerland

Rafael Gonzalez, Javeriana University, Colombia

Clever Ricardo Guareis de Farias, University of Sdo

Paulo, Brazil

Jens Gulden, University of Duisburg-Essen, Germany

Markus Helfert, Dublin City University, Ireland

Philip Huysmans, University of Antwerp, Belgium

Ilian Ilkov, IBM, The Netherlands

Ivan Ivanov, SUNY Empire State College, USA

Dmitry Kan, AlphaSense Inc., Russia

Dimitris Karagiannis, University of Vienna, Austria

Marite Kirikova, Riga Technical University, Latvia

Samuel Kounev, Karlsruhe Institute of Technology,

Germany

José Paulo Leal, University of Porto, Portugal

Kecheng Liu, University of Reading, UK

Leszek Maciaszek, Wroclaw University of

Economics, Poland

Jelena Marincic, University of Twente, The

Netherlands

Michele Missikoff, Institute for Systems Analysis and

Computer Science, Italy

Dimitris Mitrakos, Aristotle University of

Thessaloniki, Greece

Preslav Nakov, Qatar Computing Research Institute -

Qatar Foundation, Qatar

Ricardo Neisse, European Commission Joint Research

Center, Italy

Bart Nieuwenhuis, University of Twente, The

Netherlands

Selmin Nurcan, University Paris 1 Pantheon

Sorbonne, France

Olga Ormandjieva, Concordia University, Canada

Sietse Overbeek, University of Duisburg-Essen,

Germany

Mike Papazoglou, Tilburg University, The
Netherlands

Marcin Paprzycki, Polish Academy of Sciences,

Poland

Oscar Pastor, Universidad Politécnica de Valencia,

Spain

Henderik Proper, Public Research Centre - Henri

Tudor, Grand Duchy of Luxembourg

Ricardo Queirés, [PP, Portugal

Jolita Ralyte, University of Geneva, Switzerland

Gil Regev, EPFL / Itecor, Switzerland

VI

PROGRAM COMMITTEE (CONT.)

Wenge Rong, Beihang University, China

Ella Roubtsova, Open University, The Netherlands

Irina Rychkova, University Paris 1 Pantheon

Sorbonne, France

Shazia Sadiq, University of Queensland, Australia

Valery Sokolov, Yaroslavl State University, Russia

Richard Starmans, Utrecht University, The
Netherlands

Cosmin Stoica Spahiu, University of Craiova,

Romania

Coen Suurmond, RBK Group, The Netherlands

Bedir Tekinerdogan, Bilkent University, Turkey

Linda Terlouw, ICRIS B.V., The Netherlands

Yasar Tonta, Hacettepe University, Turkey

Roumiana Tsankova, Technical University of Sofia,

Bulgaria

Marten van Sinderen, University of Twente, The

Netherlands

Maria Virvou, University of Piracus, Greece

Roel Wieringa, University of Twente, The

Netherlands

Shin-Jer Yang, Soochow University, Taiwan

Benjamin Yen, University of Hong Kong, China

Fani Zlatarova, Elizabethtown College, USA

vl

BEST PAPERS SELECTION

The authors of around ten selected papers presented at BMSD 2014 will be invited by Springer-Verlag to submit

revised and extended versions of their papers for publication in a Springer LNBIP Series book.

VIII

FOREWORD

When developing an information system, we need adequate underlying business / enterprise
models that would help appropriately considering the real-life business context in which the
information system would have to operate. This challenge is being addressed by numerous
researchers whose efforts have been inspired by the goal of closing the gap between enterprise
modeling and software design. Even though some results have been delivered in this direction, we
do not observe actual improvements yet and still many information systems development projects
go over time/budget, and the user satisfaction remains low. Moreover, the greater cutrent
computing and hardware possibilities inspire developers to offer more and more “built in”
intelligence for the benefit of the user, which is nevertheless causing even lower user satisfaction
and even frustration — the ways in which many software systems “think” for the user, “decide”
what should be the needs of the user, “adapt” to inferred user habits, and so on, are widely
unacceptable for the public. More and more we hear people saying that human behavior is too
complex to be graspable by a programmed software system in an adequate and nearly exhaustive
way. At the same time, we believe that we should not deny the inspiring progress software
development has reached. Instead, we may better learn to what extent we should rely on software
and we should improve our ability to align software to its real-life (business) context — here
enterprise models are claimed to be crucial (not only for understanding and/or (re-)engineering the
enterprise under consideration but also for adequately developing on top a supportive software
system). Automating (partially) enterprise processes by means of software systems can only be
accomplished in a methodological and systematic way, if based on corresponding enterprise
models. Said otherwise, software generation should stem from corresponding enterprise modeling,
by aligning enterprise modeling concepts and corresponding software specification concepts. Only
such an enterprise-software alignment could actually guarantee that: (a) the software system would
be properly integrated in its enterprise context; (b) an enterprise-software traceability would be
possible allowing not only for software updates driven by new requirements but also for possible
enterprise re-engineering activities, inspired by a goal to better fit the enterprise to the IT
platform(s) used; (c) re-use could be an issue, counting on enterprise modeling constructs and
software components. This points to the emerging discipline of enterprise engineering that
addresses challenges such as agility and adaptability of enterprises, and is partially inspired by the
goal of better facilitating the development of supportive (with regard to enterprises) software
systems. Nevertheless, most current enterprises represent complex, evolving networked
organizations while most current software systems are composed of sophisticated components and
driven by complex rules. Thus, neither enterprise models nor software specification models can
usefully be built starting from the scratch — what we need are (generic) enterprise modeling patterns
and possibility to adequately reflect such patterns in corresponding software components. Closing
the gap between enterprise modeling and software design in a component-based way has been an
important research challenge for years already. All this has been dominant for BMSD, the
international symposium on Business Modeling and Software Design, bringing together researchers
and practitioners interested in business/enterprise modeling and its relationship to software design,

and demonstrating for a fourth consecutive year a high quality of papers and presentations as well

IX

as a stimulating discussion environment. The theme of BMSD 2014 (the Fourth International
Symposium on Business Modeling and Software Design) is: “GENERIC BUSINESS
MODELING PATTERNS AND SOFTWARE RE-USE”, and the scientific areas of interest to
the symposium are: (a) business models and requirements; (b) business models and services; (c)
business models and software; (d) information systems architectures. Further, there are three
application-oriented special sessions, namely: a special session on e-Health Services and
Technologies, a special session on Intelligent Systems and Business Analysis, and an Industrial

Track. These special sessions are bringing additional practice-driven value to the symposium.

This book contains the proceedings of BMSD 2014, held in Luxembourg, Grand Duchy of
Luxembourg, on 24-26 June 2014. The proceedings consists of 37 high-quality research and
experience papers that have not been published previously. These papers have undergone a detailed

peer-review process and were selected based on rigorous quality standards.

The symposium has been organized and sponsored by the Interdisciplinary Institute for
Collaboration and Research on Enterprise Systems and Technology (IICREST), in collaboration
with the Public Research Centre Henri Tudor (TUDOR). Cooperating organizations have been the
Dutch Research School for Information and Knowledge Systems (SIKS), Aristotle University of
Thessaloniki (AUTH), the UTwente Center for Telematics and Information Technology (CTIT),
and AMAKOTA Ltd.

The fourth edition of BMSD follows three inspiring events, namely: Sofia 2011, Geneva 2012, and
Noordwijkerhout 2013. We are proud to have succeeded in establishing and maintaining high
scientific quality and stimulating collaborative atmosphere — the BMSD Community is
characterized by competence, motivation, sharing, and innovativeness. In addressing the above-
mentioned research challenges and areas, BMSD 2014 has considered a large number of research
topics: from more conceptual ones, such as enterprise modeling, modeling languages, meta-
modeling, ontologies, business rules, enterprise regulations, model-driven adaptability, intelligent
systems, and Semiotics, to more technical ones, such as software specification, use cases, database
clusters, model-driven testing, and ‘e-applications’ (in Healthcare and Business), from more
business-oriented ones, such as business model design, enterprise architecture management,
business process simulation, enterprise resource planning and strategies, and requirements
specification, to software architectures —related topics. We believe that all these research
contributions highlight challenging (technical) problems and present innovative solutions relevant

to the scientific areas mentioned already.

The 37 published papers (including several Invited Papers) were selected from 52 submissions and
12 of these papers were selected for a 30-minutes oral presentation (Full Papers); in addition, 25

papers were selected for a 20-minutes oral presentation (Short Papers and Special Sessions Papers).

X

Hence, the full-paper acceptance ratio of 23% (the same as in 2013) shows a high level of quality
which we intend to maintain and reinforce in the following editions of the symposium. Further, the
BMSD’14 authors are from: Austria, Belgium, Bulgaria, China, Germany, India, Ireland, Italy,
Japan, Kazakhstan, Luxembourg, The Netherlands, Poland, Portugal, Russia, Spain, Switzerland,
Taiwan, Tunisia, UK, and USA (listed alphabetically); this makes in total 21 countries (compared to
14 countries having been represented in 2013, 11 countries — in 2012, and 10 countries — in 2011);
7 countries, nevertheless, have been represented in all 4 BMSD editions so far, these are: Belgium,
Bulgaria, Germany, The Netherlands, Switzerland, Russia, and UK. This clearly indicates for a very
strong Buropean influence and also for our succeeding to add on the “BMSD Map” impressive

non-European countries.

The current proceedings’ Publisher is SCITEPRESS and we deliver not only printed proceedings
but also an electronic version of the proceedings — all presented papers will be made available at the
SCITEPRESS Digital Library by September, 2014. Furthermore, the proceedings will be submitted
for indexation by DBLP (Computer Science Bibliography). Finally, the authors of around ten
selected papers presented at BMSD 2014 will be invited by Springer-Verlag to submit revised and
extended versions of their papers for publication in a Springer LNBIP (Lecture Notes in Business

Information Processing) Series book.

The high quality of the BMSD 2014 program is enhanced by two Keynote Lectures, delivered by
distinguished guests who are renowned experts in their fields, including (alphabetically): Henderzk
Proper (Public Research Centre Henri Tudor, Grand Duchy of Luxembourg) and Roel Wieringa
(University of Twente, The Netherlands). In addition, the Keynote Speakers and other BMSD’14
participants will take part in a panel discussion and also in other discussions stimulating community
building and facilitating possible R&D project acquisition initiatives. These high points in the
symposium program would definitely contribute to maintaining the event’s high quality and its

stable and motivated Community.

Building and interesting and successful program for the symposium required the dedicated efforts
of many people. Firstly, we must thank the Authors, whose research and development
achievements are recorded here. Also, the Program Committee members each deserve credit for
the diligent and rigorous peer-reviewing. Further, we would like to mention the excellent
organization provided by the IICREST team (supported by its logistics partner, AMAKOTA Ltd.)
— the team did all necessary work for delivering a stimulating and productive event; the greatly
appreciated support of Dimitris Mitrakos is to be especially mentioned here. We appreciate the
local support brought forward by our Colleagues from the Public Research Centre Henri Tudor.
We appreciate as well the willingness of SCITEPRESS to publish the current proceedings and we
bring forward special compliments to Vitor Pedrosa for his devoted and professional work with

regard to the proceedings preparation. We are indebted to Alexander Verbraeck from TU Delft for

XI

all his encouraging support. Last but not least, we thank the Keynote Speakers for their invaluable

contribution and for taking the time to synthesize and deliver their talks.

We wish you all an inspiring symposium and an enjoyable stay in the beautiful city of Luxembourg.
We look forward to seeing you next year in Milan, Italy, for the Fifth International Symposium on
Business Modeling and Software Design (BMSD 2015), details of which will be made available at
http:/ /www.is-bmsd.org.

Boris Shishkov
IICREST, Bulgaria

XII

CONTENTS

KEYNOTE SPEAKERS

Exploring the Challenges of Modelling Landscapes

Henderik Proper 3
The Structure of Goal Models in Requirements Engineering

Roel Wieringa 5
FULL PAPERS

Power-Modelling - Toward a More Versatile Approach to Creating and Using Conceptual Models
Ulrich Frank 9

A Meta-architecture for Service-oriented Systems and Applications
Leszek A. Maciaszek, Tomasz Skalniak and Grzegorg Biziel 20

Improving Computer-Support for Collaborative Business Model Design and Exploration
Marin Zec, Peter Diirr, Alexander W. Schneider and Florian Matthes 29

Agile Enterprise Architecture Management - An Analysis on the Application of Agile Principles
Matheus Hander, Sascha Roth, Christopher Schulz, and Florian Matthes 38

Context-Sensitive Impact Analysis for Enterprise Architecture Management
Melanie Langermeier, Christian Saad and Bernbard Baner 47

The Intertwinement of Architectural Governance and Enterprise I'T-Architecture - Enterprise
IT-Architecture Viewed as Boundary Object from a Complex Adaptive Systems View
Marijn Janssen 56

A Relation-Algebra Language to Specify Declarative Business Rules
Lex Wedemeijer 63

Modelling Capability and Affordance as Properties of Human/Machine Resource Systems
Vanghan Michel] and Ella Roubtsova 74

Using UML to Specify Artifact-centric Business Process Models
Montserrat Estaiiol, Anna Queralt, Maria-Ribera Sancho and Ernest Teniente 84

Is the Value Concept a Valuable Concept for Information Systems?
Coen Sunrmond 94

A Test Generator for Model-Based Testing
Ella Roubtsova and Sergnei Roubtsov 103

Model-Driven QoS-aware Approach for the Sensor Network
Assel Akzhalova 113

XIII

SHORT PAPERS

Modelling Information Systems Using Nomis - A Practical View of Its Aplication and Its Insights to
Business Processes

José Cordeiro

An Approach to the Context-oriented Use Case Analysis
Kalinka Kaloyanova and Neli Maneva

Validating Value Network Business Models by Ontologies
José Granjo, Marzieh Bakhshandeh, Joao Pontbinko, Miguel Mira da Silva and Artur Caetano

Actors Based Competences Supporting Enterprise Modeling Changes
Marwen Jabloun, Yemna Sayeb, Henda Ben Ghezala and Khaled Gaalon!

Towards a Generic Data Model for REA Based Applications
Bernhard Wally and Christian Huemer

Towards Simulation of Business Processes - Transforming BPMN Models to Enterprise Dynamics Models
Ralf Schepers, Tobias Minning, Y annik Moog and Ingo |. Timm

On Advanced Business Simulations - Converging Operational and Strategic Levels
Marc Drobek, Wasif Gilanz, David Redlich, Thomas Molka and Danielle Soban

Multi-Level Business Modeling and Simulation
Koen Casier, Marlies VVan der Wee, Sofie V'erbrugge, Heritiana Ranaivoson, Tangny Coenen and Camille Reynders

A Component Abstraction for Localized, Composable, Machine Manipulable Enterprise Specification
Vinay Kulkarni, Tony Clark and Balbir Barn

Business Requirements - Normative Approach to Behavior Modeling
Askbhat Omarov, Rustem Kamun and Timur Umarov

Towards an Integrated Model for Enterprise Interoperability
Wided Guédria

Applying Business Process Modeling Tools in Enterprise Resource Planning System Replacements - A Case
Study
Stephan Grof§ and Justus Holler

Future Business Model for Cellular Microgrids
Intisar Ali Sajjad, Roberto Napoli and Gianfranco Chicco

Comparison of Data Management Strategies for Multi-Tenant Database Cluster
Ewgeny Boytsov and 1 alery Sokolov

Service Composition Based on Semantic Vocabulary
YuHui Ning, ShuXia Yu, YuYne Du and Wei Lin

Reflecting on the Ambient Intelligence Vision - A Cyber-Physical-Social Perspective
Olga Murdoch, Michael O’Grady, Rem Collier and Gregory M. P. O’Hare

Business Model Design - An Evaluation of Paper-based and Computer-Aided Canvases
Boris Fritscher and Yves Pignenr

BYOD: The Next Wave of Consumerization of I'T - The Impact of BYOD on the Enterprise I'T Landscape
Ivan I. Ivanov

125

135

142

148

153

159

166

172

180

186

196

202

209

217

223

229

236

245

XIv

SPECIAL SESSION ON E-HEALTH SERVICES AND TECHNOLOGIES (EHST)
Responsive Universal Design with Universal User Profiles and CSS User Queries

Hao-Wen Yang and Hsing Mei

The Effect of Touch Care for Baby by Mother
Yoko Hirohashi, Chieko Kato, Mayumi Oyama-Higa, Sang-jae 1 ee, Tomoe Sano and Masato Ichikawa

SPECIAL SESSION ON INTELLIGENT SYSTEMS AND BUSINESS ANALYSIS

Uncertainty Modeling in the Process of SMEs Financial Mechanism Using Intuitionistic Fuzzy Estimations
George L. Shabpazov, Lynbka A. Donkovska and VVassia K. Atanassova

Significance of the Predictive Maintenance Strategies for SMEs
Mincho B. Hadjiski, Lynbka A. Donkovska, Stefan L. Kojnov, Vladimir V. Monov and 1 assil G. Nikov

Artificial Intelligence Neural Networks Applications in Forecasting Financial Markets and Stock Prices
Veselin L. Shabpazov, Lyubka A. Doukovska and Dimitar N. Karastoyanov

Intercriteria Decision Making Approach to EU Member States Competitiveness Analysis
Vassia K. Atanassova, 1yubka A. Doukovska, Krassimir T. Atanassov and Deyan G. Mavrov
INDUSTRIAL TRACK

Value-driven Design and Implementation of Business Processes - Transferring Strategy into Execution at
Pace with Certainty
Mathias Kirchmer

AUTHOR INDEX

255

261

271

276

282

289

297

303

XV

KEYNOTE SPEAKERS

Abstract:

Exploring the Challenges of Modelling Landscapes

Henderik Proper
Public Research Centre Henri Tudor, Grand Duchy of Luxembourg
erik.proper@tudor.lu

In enterprise modelling, a wide range of models and languages is used to support different purposes. If left
uncontrolled, this can easily result in a fragmented perspective on the enterprise, its processes and IT
support. On its turn, this negatively affects traceability, the ability to do cross-cutting analysis, and the
overall coherence of models. Different strategies are suggested to achieve model integration. They mainly
address syntactic-semantics aspects of models/languages, and only to a limited extent their pragmatics. In
actual use, the ‘standardising’ and ‘integrating’ effects of traditional approaches (e.g. UML, ArchiMate)
erodes. This is typically manifested by the emergence of local ‘dialects’, ‘light weight versions’, as well as
extensions of the standard to cover ‘missing aspects’. This presentation aims to create more awareness of
the factors that are at play when creating integrated modelling landscapes. Relying on our ongoing research,
we develop a fundamental understanding of the driving forces and challenges related to modelling and
linguistic variety within modelling landscapes. In particular, the presentation discusses the effect of a priori
fixed languages in modelling and model integration efforts, and argues that they bring about the risk of
neglecting the pragmatic richness needed across practical modelling situations.

BRIEF BIOGRAPHY

Prof.dr. Henderik A. Proper, Erik for friends, is a
senior research manager at Public Research Centre -
Henri Tudor in Luxembourg. He is also professor of
information systems at the Radboud University
Nijmegen, The Netherlands. He is one of the co-
initiators of the development of the ArchiMate
language for Enterprise Architecture. At Tudor, he
leads the research programme on enterprise
engineering. Erik has co-authored two books on
enterprise architecture, and provided substantial
contributions to two other books on this topic. He is
also an editor in-chief of the book series on
Enterprise Engineering, published by Springer. His
home on the web can be found at
“http://www.erikproper.eu”.

The Structure of Goal Models in Requirements Engineering

Roel Wieringa
University of Twente, The Netherlands
R.J.Wieringa@utwente.nl

Abstract: Requirements engineering is the activity to mutually align business goals with software systems behavior. In
goal-oriented RE, goal models are used in a systematic process to exploit the interaction between the
properties of the business context of a software system and properties of the system itself in order to
contribute to stakeholder goals. In this talk I will describe this process and give examples to illustrate it. I
then highlight several aspects of the structure of goal models, including means-end structures, temporal
structures and contribution structures, and show what role they play in reasoning about organization design
and software design.

BRIEF BIOGRAPHY

Roel Wieringa (http://www.cs.utwente.nl/~roelw) is
Chair of Information Systems at the University of
Twente, The Netherlands. His research interests
include requirements engineering, risk assessment,
and design research methodology. He has written
two books, on Requirements Engineering and on the
Design of Reactive Systems. His next book, Design
Science Methodology for Information Systems and
Software Engineering will appear in 2014 with
Springer.

FULL PAPERS

Power-Modelling

Toward a More Versatile Approach to Creating and Using Conceptual Models

Keywords:

Abstract:

Ulrich Frank

University of Duisburg-Essen, Essen, Germany
ulrich.frank @uni-due.de

DSML, Interactive Modelling, Multi-level Modelling, Empowerment.

The prospects of conceptual modelling are widely undisputed. Nevertheless the current practice of conceptual
modelling remains unsatisfactory. Usually, modelling languages offer primitive concepts only—with respec-
tive effects on productivity and model quality. The creation of models is restricted to early phases of system
life-cycle. Hence, the benefits of models in later phases are ignored. Furthermore, the creation and use of
conceptual models is still restricted to experts only. In this paper, the outline of a new modelling paradigm,
referred to as power-modelling, is presented. It builds on the potential of domain-specific modelling languages
(DSML), application frameworks and reference models. It regards models as the primary medium to perceive,
interact with and change systems and the environment they are supposed to operate in during the entire sys-
tem life-cycle. For this purpose, power-modelling is built on an extensible set of multi-level DSML that fit
the conceptual perspectives of a wide range of prospective users and a common representation of models and
code, which allows overcoming the notorious problem of synchronizing models and code.

1 INTRODUCTION

If maturity comes with age, a few decades of research
and application should have resulted in a widely per-
fected state of conceptual modelling. There are in-
deed various signs of maturity. Both in Information
Systems and Computer Science it seems undisputed
that conceptual models are a prerequisite to manage
the complexity of large software systems. Further-
more, it is acknowledged that conceptual models are
much better suited than code to involve prospective
users and other stakeholders in the process of devel-
oping software. The benefits of conceptual models for
designing software systems do not come as a surprise.
After all, software systems are linguistic artefacts. On
the one hand, they are realized with some kind of im-
plementation language. On the other hand, as non-
physical artefacts they can be perceived—and used—
by humans only through some kind of linguistic rep-
resentation. At best, this linguistic representation cor-
responds to the language used in the targeted do-
main. Conceptual models are aimed at reconstructing
domain-specific languages in a way that prospective
users perceive them as familiar, while at the same time
they allow for transformations into implementation-
level languages. By structuring and eventually au-
tomating the transformation of models into code, as

it is pursued by approaches to model-driven software
development (Atkinson and Kiihne, 2003; France and
Rumpe, 2007), conceptual modelling is promising to
substantially improve the productivity of developing
software systems.

But conceptual modelling is not restricted to mod-
elling software systems. Exploiting the potential of
information systems often requires re-organizing re-
spective action systems. Consequently, correspond-
ing modelling approaches, such as business process
modelling, turned out to be a good choice for sup-
porting people with analysing and (re-) structuring ac-
tion systems. The insight that corporate action sys-
tems do not only comprise business processes, but
also other subjects, such as goals, resources or or-
ganizational structure, contributed to the emergence
of approaches to enterprise modelling (Scheer, 1992;
Ferstl and Sinz, 2006; Frank, 2013). By integrat-
ing conceptual models of software systems with con-
ceptual models of action systems, enterprise models
promise to provide a foundation for jointly analysing
and designing information systems and the relevant
organizational context. Since more and more orga-
nizations have given up developing software on their
own, the original idea of using conceptual models
for designing software systems does not fit the de-
mands of many organizations anymore. At the same

Fourth International Symposium on Business Modeling and Software Design

time, the ever growing complexity of IT infrastruc-
tures created additional challenges. Again, concep-
tual models of IT infrastructures, including various
representations of their high-level structure or archi-
tecture, have evolved as a remedy. While respective
models are often part of enterprise modelling meth-
ods, they are also featured by approaches to enterprise
architecture, which in general aim mainly at managers
and therefore emphasize a higher level of abstraction
(Lankhorst, 2005; Proper et al., 2010; Buckl et al.,
2010). Therefore, conceptual modelling supports a
wide range of activities related to analysing, design-
ing and managing IT infrastructures and correspond-
ing action systems. A relatively large research com-
munity, both in Information Systems and Computer
Science, may serve as further evidence for the matu-
rity of the field.

However, our brief assessment of the field’s con-
tributions may be deceptive—and maturity may have
its downsides, too. As we shall see, there are seri-
ous reasons for not being satisfied with the state of
the art in conceptual modelling. There are even rea-
sons to challenge the current paradigm of concep-
tual modelling. In any case, it does not seem ap-
propriate to further follow existing paths of research
by focussing solely on problems within this paradigm
without leaning back once in a while to reflect upon
other ways to conceptualize, develop, maintain and
use models. While I had my doubts for some time
whether we are doing the right thing, I started to in-
tentionally abandon some characteristics of concep-
tual modelling which I had not only taken for granted,
but which I used to preach enthusiastically. I am
still in the—sometimes painful, sometimes exciting—
process of realigning my perspective and my research
agenda. However, a few ideas have emerged that I
regard as promising. One of them is subject of this
paper. I dared calling it “power-modelling”, not only
to express that it might be suited to substantially pro-
mote the power of modelling as a tool to create and
modify systems, but also to empower users by sup-
porting them with sophisticated, but convenient in-
struments to use and modify the systems they work
with.

The paper starts with a critical review of the cur-
rent state of the art. Subsequently, an overview of
approaches that address certain shortcomings of con-
ceptual modelling is given. Against this background,
I will describe the idea of power-modelling by out-
lining the foundational concepts and by illustrating
how it could be implemented. Since the respective
research is in a very early stage and faces serious chal-
lenges, the conclusions will especially focus on future
research.

10

2 CONCEPTUAL MODELLING: A
CRITICAL REVIEW

There are various reasons, why the current state of
conceptual modelling might not be regarded as satis-
factory (Frank, 2014a). At first, there is the sobering
fact that the dissemination of conceptual modelling
in practice is still rather modest. Many software de-
velopers still regard it as dispensable. Managers per-
ceive it as a cost-driver that does not deliver measur-
able benefit. Finally, prospective users are often not
keen to look into conceptual models, nor are they ca-
pable of designing them on their own. The unsatis-
factory adoption in practice may be contributed to a
lack of respective professional education among to-
day’s workforce. However, I am afraid, we would
take the easy way out, if we were satisfied with this
explanation. There are other, more essential reasons
for questioning the power of current approaches to
conceptual modelling, which also may, in part, hin-
der its acceptance and dissemination in practice. They
relate to the economics of modelling and the psycho-
logical assumptions underlying the construction and
perception of conceptual models.

2.1 Economics of Modelling

With respect to economics of modelling, three as-
pects are of particular relevance. At first, there is
the productivity of creating, analysing and modify-
ing conceptual models, i.e. the time these activities
take for a certain outcome. While modelling produc-
tivity depends on modellers’ skills and experiences, it
is also affected by the available modelling languages
and tools. A modelling language can contribute to
productivity by providing reusable artefacts and by
allowing for abstractions that foster reuse and adapta-
tion of models. Currently, most modelling languages
are restricted to a few semantic primitives that remind
of basic ontologies like the one suggested by (Bunge,
1977) or (Grossmann, 1983). While generic concepts
such as “entity type”, “class”, “attribute”, etc. can
be applied to any domain—which is the purpose of
a general ontology—they require modellers to recon-
struct all concepts of a model from scratch. Hence,
they promote a wide range of reuse, which should im-
prove economies of scale e.g. of modelling tools, but
in a particular case, their contribution to productivity
is very poor. Imagine, you would have to describe a
domain such as accounting and you were restricted to
a language that consisted of generic concepts like the
ones provided by the ERM and the UML! Further-
more, modelling languages provide only a few ab-
straction concepts such as classification, generaliza-

Power-Modelling - Toward a More Versatile Approach to Creating and Using Conceptual Models

tion or encapsulation. As a consequence, similarities
between a range of models can often not be accounted
for by abstracting on a set of common properties. The
lack of abstraction is especially painful in business
process modelling, where reuse is widely restricted
to copy&paste (Frank, 2012). Second, there is little
protection of investment. The use of conceptual mod-
els is widely restricted to the build time phase. In
later phases, models are used for documentation only,
if they are used at all. Even in those cases, where
models were used to generate code, they will usually
get devalued over time, because during maintenance
changes are directly applied to code and synchroniz-
ing models and code, beside representing a serious
challenge, does not happen. Third, the benefit of mod-
els depends on their quality. However, judging the
quality of conceptual models is a demanding task and
requires experts. Current modelling languages and
tools hardly contribute to model quality, since their
generic concepts allow for almost any kind of absurd
models as long as they are syntactically correct. From
a managerial perspective there is the additional prob-
lem that the economics of modelling is hard to judge.
While it is often not trivial to determine modelling
costs in advance, quantifying the benefits of models
ex ante is almost impossible. As long as managers
are not convinced that modelling is suited to generate
substantial benefit, the lack of legitimate quantifica-
tion methods creates a serious obstacle to conceptual
modelling in practice.

2.2 Cognitive Capabilities

Conceptual modelling is based on basic assumptions
that most members of the modelling community—
including myself—are convinced of. First, there is
the assumption that the analysis and design of com-
plex systems recommends a rational approach, i.e.
an approach that is characterized by the differenti-
ated consideration of pros and cons and that puts em-
phasis on justifying decisions. Second, related to the
first assumption, following a Kantian tradition, a ra-
tional perspective demands for focussing on concepts.
Conceptual modelling is typically aimed at the recon-
struction of terms used in the domain of interest. Re-
ferring to existing terminology is supposed to make
conceptual models accessible by people working in
the domain. At the same time, a reconstruction is
required in order to create concepts that fit the spe-
cific modelling purpose and that facilitate mapping
to implementation languages. As a consequence, it
it common to specify concepts according to the def-
initions of types or classes in implementation lan-
guages. While these basic ideas make perfect sense,

they are based on an idealization that is seriously chal-
lenged by research in cognitive psychology. There is
a plethora of work that shows the rather limited abil-
ity of most humans to precise and consistent think-
ing, for an overview see (Kahneman et al., 1982).
Furthermore, the way people acquire and use con-
cepts is often in clear contrast with the definitions we
use in conceptual modelling (Lakoff, 1990). Among
the most relevant insights are the following: Con-
cepts are often not associated with (extensional) defi-
nitions, but rather with a few typical examples (proto-
types”). Conceptual categories are often perceived as
having no clear boundaries (membership gradience”,
(Lakoff, 1990), p. 12). The last example is of es-
pecial relevance for our investigation: Most cognitive
models are embodied with respect to use.” ((Lakoff,
1990), p. 12) As a consequence, we cannot expect
prospective users to be much interested in and capable
of thinking in concepts as we use them for modelling
purposes.

2.3 Preliminary Conclusion

Our brief analysis of the current state of conceptual
modelling resulted in a number of problems. That
does not mean, however, to question the idea of con-
ceptual modelling in general. In order to cope with
complexity and change there is no alternative for us
other than to somehow develop models. Without ab-
straction not only our understanding of systems and
of the world in general will remain poor, but so would
be our ability to design and implement systems. Nev-
ertheless, those problems should make us think. In
particular, there are three areas that demand for more
attention. There is need to promote modelling pro-
ductivity. For this purpose, reuse has to be fostered
by providing modelling constructs that incorporate
domain-specific semantics. To promote model qual-
ity, the reusable artefacts offered to users should be
thoroughly developed and tested. At the same time,
economies of scale are crucial. For this purpose, an
artefact needs to be reused in a wide range of cases,
which may create a conflict to modelling productiv-
ity. To improve the involvement of prospective users,
models, new forms of presenting concepts and mod-
els to users are required. Since there is evidence that
people imagine or learn concepts by associating them
with contexts of use, it might be advisable to develop
modelling environments that focus on the use of con-
cepts. The use of models during later phases of the
system life-cycle demands for developing scenarios
that illustrate the respective benefit. In addition, tech-
nical challenges, such as solving the notorious prob-
lem of synchronizing code and model have to be ad-

11

Fourth International Symposium on Business Modeling and Software Design

dressed.

3 SELECTED APPROACHES

There have been various approaches that address
some of the problems elucidated above. Some of them
are aimed at improving modelling productivity and
model quality, while others focus on implementation
issues or on user involvement.

3.1 Focus on Productivity and Quality

Reference models are based on a convincing idea. By
developing models that serve as a reference for cer-
tain domains, the costs for realizing large models in
respective domains could be reduced substantially. At
the same time, reference models should be developed
with outstanding care and expertise. Therefore, they
should effectively improve model quality. Further-
more, reference models do not only stress a descrip-
tive intention, i.e. representing a domain as it is, but
also a prescriptive intention, i.e. representing concep-
tualisations that seem especially favourable for the fu-
ture development of organizations in the targeted do-
main. Despite their convincing foundation, the dis-
semination of reference models in practice remained
extremely modest. Domain-specific modelling lan-
guages (DSMLs) are build on a similar idea. Different
from general-purpose modelling languages (GPMLs),
they comprise domain-specific concepts, thus free-
ing modellers from the need to specify these con-
cepts from scratch. At the same time, DSMLs fea-
ture usually, but not necessarily, a concrete syntax
that is adapted to representations known in the do-
main they cover. In addition to promoting productiv-
ity through improved reuse and ergonomics, DSML
also contribute to model quality, since their syntax
and semantics facilitate preventing models that are all
too strange. Modelling is more convenient, and the
range of possible models is clearly restricted com-
pared to a GPML.

While DSMLs are certainly suited to address the
productivity challenge, they are not the silver bullet of
conceptual modelling, since they face a fundamental
conflict of system design. On the one hand, increasing
productivity demands for concepts that are specific to
a particular domain, i.e. that incorporate a high de-
gree of domain-specific semantics. On the other hand,
economies of scale demand for DSMLs that cover a
wider domain, i.e. that include a smaller degree of
domain-specific semantics. This fundamental conflict
of designing DSMLs is illustrated in fig. 1

12

Potential Productivity Gain

»
>

Level of (domain-specific) Semantics

Figure 1: The fundamental conflict of designing DSMLs.

3.2 Focus on Implementation

If one regards a model mainly as an instrument for de-
veloping software, the transformation of models into
code is a major aspect of increasing the value of mod-
els. Some time ago, Wiederhold et al. proposed an ap-
proach, called “megaprogramming” to substantially
promote the productivity of programming large ap-
plication systems (Wiederhold et al., 1992). Even
though they do not explicitly speak of modelling,
there are clear relations to conceptual modelling in
their work. They suggest to compose large software
systems from “megamodules”. Megamodules can be
thought of as domain-specific abstraction: megamod-
ules “capture the functionality of services provided
by large organizations like banks, airline reservation
systems, and city transportation systems. ... The
concepts, terminology, and interpretation paradigm of
a megamodule is called its ontology.” (Wiederhold
et al., 1992), p. 89. However, the representation of
megamodules as well as their composition happens on
the code level only. Therefore, they are hardly suited
for being used by non-experts. It is, however, con-
ceivable to combine the idea of megamodules with a
representation that corresponds more clearly to a ter-
minology users are familiar with. Even though meg-
amodules, like DSML, promote domain-specific arte-
facts, their use is based on a bottom-up approach in
the sense that a system is created from some kind
of building block without providing a blueprint for
the overall design. Application frameworks stress a
top-down approach. An application framework rep-
resents an architecture and the partial implementa-
tion of a class of application systems. “Black box”
frameworks can be adapted only through interfaces,
while “white box” frameworks allow for modifying
their code. Frameworks can substantially boost the
productivity of application development. However,
while the adaptability of black box frameworks is

Power-Modelling - Toward a More Versatile Approach to Creating and Using Conceptual Models

limited, using white box frameworks efficiently re-
quires considerable effort. Similar to megamodules
the representation of frameworks is usually restricted
to code. Approaches to model-driven software de-
velopment take advantage of conceptual models for
designing systems. At the same time, they promote
implementation productivity by aiming at generating
software systems from models (France and Rumpe,
2007), (Stahl and Vélter, 2006). To cope with a mul-
titude of platforms and programming languages, spe-
cific effort has been put on generating platform- and
language-independent representations that allow for
a straightforward transformation into particular im-
plementations (Mellor, 2004), (Pastor and Molina,
2007). Even though model-driven software develop-
ment is suited to improve development productivity
and software quality, it remains unsatisfactory with
respect to the evolution of software systems: Usually
it is not possible to generate an entire software system
from models, i.e. there is need for manual extensions.
As a consequence, the evolution of code and models
has to be synchronized. While there are a few ap-
proaches that address the challenge of synchronizing
models and code (e.g. (Balz et al., 2010), (Agrawal,
2003)), they are not satisfactory, because they cannot
always ensure consistency.

3.3 Focus on User Involvement

To some extent, the development of DSML and corre-
sponding editors is aimed at making modelling more
convenient for users who are not trained in concep-
tual modelling. The idea of using models at run time
(Blair et al., 2009), while also contributing to the
protection of investments, may be suited to motivate
more people to use models: as a conceptual represen-
tation of the systems they interact with and may want
to modify. However, recent research in this area is
mainly focused on software engineering aspects such
as synchronisation of models and systems, e.g. (Song
et al., 2011), or self-adapting systems, e.g. (Amoui
et al., 2012), (Morin et al., 2009). Krogstie proposes
using models during the entire life-cycle of a system
to emphasize user empowerment (Krogstie, 2007).
For this purpose, modelling should not longer be re-
stricted to system development. Instead, for mod-
elling to have a “larger effect”, he proposes “to en-
able all knowledge workers to be active modelers.”
(p- 305). Enterprise software systems should be pre-
sented to their users as “interactive models”, the use
of which is “about discovering, externalizing, captur-
ing, expressing, representing, sharing and managing
enterprise knowledge.” (p. 306). In addition to known
approaches to enterprise modelling, Krogstie stresses

the need for more intuitive representations of models,
such as “visual scenes for pro-action learning” and
descriptions of the relevant context that focus on ac-
tions (p. 308). Using models as objects and objectiva-
tion of organizational knowledge work and of individ-
ual learning is appealing. However, Krogstie remains
vague about the realization of his vision. He suggests
a “model-generated workplace (MGWP)” that “is a
working environment for the business users involved
in running the business operations” (p. 312), but he
does not provide details of how to accomplish “inte-
grated modelling and execution platforms” (p. 308).

4 OUTLINE OF
POWER-MODELLING

The idea presented in this section was inspired by var-
ious streams of work, some of which are described
above. It is also a result of our long-standing-work
on enterprise modelling that confronted us with some
serious problem we were not able to solve as long
as we were still bound to the traditional principles of
conceptual modelling and of implementing modelling
tools. Hence, the outline of power-modelling is also
an attempt to suggest a new paradigm of creating and
using conceptual models.

4.1 Objectives and Challenges

Against the background of our previous discussion,
the following objectives mark desirable features of a
future conception and realization of modelling.
Objective O1: A powerful approach to conceptual
modelling should enable the use of models during the
entire life-cycle of a system. Rationale: The com-
plexity of enterprise systems demand for a represen-
tation that users are able to understand, not only to ob-
tain a better comprehension of a software system, but
also of the the context, since an increasing part of an
enterprise is represented by its software systems. At
the same time, people need (cognitive) models any-
way to make sense of software systems and of organi-
zations. Therefore, explicit models that fit the cogni-
tive capabilities of users should be suited to increase
organizational transparency. Objective O2: Concep-
tual models that represent software systems and the
context they operate in should be interactive. Ratio-
nale: In order to serve as a universal interface to en-
terprise systems that fosters user empowerment, mod-
els need to allow for navigation, for searching and for
modifying their states—not only during build time,
but during run time. Objective O3: Conceptual mod-
els should provide access to their conceptual foun-

13

Fourth International Symposium on Business Modeling and Software Design

dation, i.e. to the modelling language they are de-
fined with, i.e. respective modelling tools should be
self-reflective. Rationale: Users may want to get a
better understanding of the concepts the models they
interact with are based on. Furthermore, advanced
users may even want to change those concepts. Ob-
Jective O4: Conceptual models should be constructed
from concepts that are used in professional discourse
in the relevant domain. Rationale: Domain-specific
concepts promote modelling productivity and make
the use of modelling concepts more intuitive. Objec-
tive O5: Conceptual models of an enterprise should
cover multiple perspectives and foster their integra-
tion. Rationale: The complexity of many organiza-
tions goes along with specialization which in turn re-
sults in different professional perspectives and lan-
guages. In order to satisfy the demand for provid-
ing users with representations they are familiar with,
models of an enterprise need to account for different
perspectives. On the one hand, that relates to pro-
viding modelling concepts which correspond to the
technical language that is characteristic for a certain
perspective. On the other hand, it should also be
possible to present a model using different notations,
both graphical and textual, in order to satisfy differ-
ent cognitive styles. Objective 06: To increase the
economics of modelling economies of scale have to
be increased by promoting reuse. Rationale: Today,
the effort it takes to develop elaborate models is of-
ten still prohibitively high. The above objectives cre-
ate considerable challenges. Among those, three are
hard to overcome within the current paradigm. Aim-
ing at both, modelling concepts that reflect particu-
lar, domain-specific technical languages, and that pro-
mote economies of scale faces an obvious conflict:
A language can either be more domain-oriented or
built for serving more general purpose. Using mod-
els at run time that allow interacting with and eventu-
ally changing a software system demands a tight in-
tegration of models and code in order to keep their
changes in synch. However, this is almost impossi-
ble due to limitations of prevalent programming lan-
guages. The elements of a model on M; are repre-
sented as objects on My, even though they are con-
ceptually located on M. This is the case, too, for
the representation of metaclasses in meta model edi-
tors. As a consequence, there is need to generate code
(objects on My cannot be further instantiated), which
creates the notorious problem of synchronizing mod-
els and code. The lack of abstraction concepts in pro-
cess modelling languages creates a serious obstacle
for reuse. While generalisation/specialisation may be
regarded as a suitable approach, it cannot be applied
to processes in a straightforward way: To satisfy the

14

substitutability constraint (Liskov and Wing, 1994),
specialisation has to be monotonic, which is impossi-
ble to achieve for process models (Frank, 2012)

4.2 Cornerstones of Power-Modelling

For the vision of power-modelling to become real, the
current paradigm is not sufficient. There is need to
change our perspective on conceptual modelling and
to aim at a different linguistic foundation—both of
modelling and implementation languages. The fol-
lowing aspects mark cornerstones of a conception of
power-modelling.

Emphasis on DSML: DSMLs that are recon-
structed from existing technical terminologies (objec-
tive O4) promise clear advantages with respect to pro-
ductivity, model quality and comprehensibility. For
this purpose, we can build on an existing integrated
set of DSMLs for enterprise modelling (Frank, 2013).

Multi-Level Modelling: In order to overcome the
fundamental conflict of designing DSMLs (objectives
04 and 06), a multi-level language architecture is
proposes. It is inspired by the definition and refine-
ment of technical languages in practice. On a more
generic, textbook” level, concepts are introduced that
are supposed to fit a wide range of more specific do-
mains. For that purpose, they remain intentionally
abstract and underspecified. On more specific lev-
els that could cover, for example, particular indus-
tries, concepts are refined and added. This process
of stepwise refinement may in the end lead to nu-
merous language levels, from more generic, over re-
gional” to local” DSMLs. Multi-level modelling de-
scribes a language architecture that allows for an ar-
bitrary number of classification levels. This allows
to achieve both, a wide range of reuse, i.e. benefi-
cial economies of scale, on higher levels, and a high
productivity that is enabled by more specific DSML
that reuse concepts of more generic DSML. Since all
DSMLs are integrated in one language architectures,
users can navigate all classification levels they are in-
terested in (objective O3). Fig. 2 illustrates a multi-
level language architecture and corresponding editors.
For a detailed description of multi-level modelling see
(Frank, 2014b).

Common representation of models and code: Us-
ing models during the entire life-cycle of a systems
create the challenge of synchronizing models and
code, which is caused by the fact that current imple-
mentation languages allow for one or two classifica-
tion levels only. There are, however, a few languages,
which are based on the recursive golden braid” archi-
tecture that facilitate systems with more classification
levels. Among these languages, XMF (Clark et al.,

Power-Modelling - Toward a More Versatile Approach to Creating and Using Conceptual Models

Meta Modeling Language

MetaEntity
MetaAttribute
Association
Reference DSML L ;
Organisational Unit
Committee
Position
Specific DSML lity Circl
(Local ,Dialect®) Department Qe EEs
Team Market Analyst
Particular Organisation ; Quality Circle
Model Marketing Department | | product Group PG 1
Market Research Market
Team Analyst MA2

foundation of »

Metamodel Editor

« specifies
Q
@
a
@
%]
v

Organisation Schema Editor

« specifies
(=]
@
Q
@
%]
v

« specifies

Figure 2: Illustration of multi-level language architecture.

2008b), (Clark et al., 2008a) is particularly suited for
supporting power-modelling. First, it enables an ar-
bitrary number of classification levels. Second, it
is accompanied by a (meta) modelling environment,
Xmodeler, that features a common representation of
models and code, hence, it eliminates the need for
synchronizing models and code and facilitates the use
of models during the entire life-cycle of a system.
In order to develop a suitable foundation of multi-
level modelling and multi-level enterprise systems,
we modified the metamodel of XMF (Frank, 2014b).
By overcoming the separation of model and code,
every system can be seen as a collection of models
which can be used interactively (objective O2) with
multiple representations that can be exchanged based
on an implementation of the model-view-controller
pattern (for details see (Clark et al., 2008a)).

Wider conception of conceptual modelling: In the
existing paradigm, a conceptual model is created from

the concepts of a modelling language, typically ar-
ranged in diagrams that represent some kind of a
graph. However, modelling can also be thought of
as an act of configuration that makes use of existing,
more generic models and of DSML. In that case, mod-
elling is more interactive, where a respective mod-
elling system suggests alternative modelling options
and requests user preferences. Since many users make
sense out of action context rather than of singular con-
cepts, interactive modelling should also go along with
the representation of the context a model is supposed
to address. A prototypical context could be provided
by an enterprise model that integrates various per-
spectives on the enterprise (Frank, 2013) (objective
05). Furthermore, such a wider conception would in-
clude to not restrict modelling to drawing diagrams.
Instead, models would be accessible through the ele-
ments of a graphical user interface, through tables or
even through plain text. While it makes sense to re-

15

Fourth International Symposium on Business Modeling and Software Design

o a T
Organisation Modeller ~ e %
File Window Browse Tools Help
Palette OrgML | UniversityOrgML | OrgChart_UniDuE

Units & Roles s -
CompOrgUni = @ l;ln—mi A 1)
° Position |:| [J" .F—‘IH%
Rale E_ . | .
Committee € o 3 S e
R ‘ Garcelor (3 ‘ oee | ,.L viepeeor |7 Aot |
< Department « b
o
o O
Qualifiers ¥ - i —
cacniay
@ Manager - e o*
& Scientific S... o1 i mj S [
& Technical S... | oot [oo || O | I Ty
t oMy T .
—_— =G =
Relationships prb J i 11 ehae Wi Techician
@ aggregate - 11 Pacly & o |
,, . Tl w5 7 &
i~ repors to -) i 5 o —
C vkspsan) E 0* Assistant
— .

Figure 3: Definition of a DSML for modelling organizational structures of universities.

strict models to types or classes, a wider conception
of modelling would also include models that comprise
objects on My using similar (graphical) representa-
tions to enable their interactive use. For example:
The representation of a business process type could
be supplemented by similar representations of busi-
ness process instances (for an example in the context
of so called “self-referential enterprise systems” see
(Frank and Strecker, 2009), p. 14).

Ubiquitous use of (multi-perspective) models:
Models are proposed as the primary medium to per-
ceive, interact with and change systems—and the en-
vironment they are supposed to operate in during the
entire system life-cycle. To serve this purpose, mod-
els have to be prepared for various perspectives to sat-
isfy different skills and needs. Then they would no
longer be a tool for system analysts and designers,
but for everybody acting responsibly in an environ-
ment that is penetrated by information systems. As
a consequence, power-modelling would contribute to
empowering users by giving them (guided) access to
a system’s conceptual foundation and by supporting
communication with other stakeholders.

4.3 TIllustration

The following scenarios highlight selected aspects of
power-modelling.

Refinement of DSML: Developing a DSML for
modeling organizational structures may appear as a
fairly trivial undertaking. However, this is not the
case. First, a remarkable concept variance has to be

16

accounted for. For example: A term like “depart-
ment” may represent clearly different kinds if orga-
nizational units in different environments. In a uni-
versity, a department consists of institutes and chairs.
In some industrial enterprises, a department is part of
a head department, in others not. Applying the idea
of multi-level modelling to this domain would sug-
gest developing a reference DSML for organization
modelling. Such a reference DSML would include
a descriptive graphical notation. A respective edi-
tor could be used by organization analysts to create
an organizational schema for a certain domain, e.g.
a particular organization or a range of organizations
of a certain kind. Finally, this more specific DMSL
would be used by local managers to build a particular
organizational structure that corresponds to the previ-
ously defined schema. Fig. 3 illustrates the definition
of a DSML for modelling organizational structures of
universities by using a more general DSML that rep-
resents a textbook-level terminology.

The resulting DSML could then be used for cre-
ating an editor that facilitates modelling the organiza-
tional structure of a particular university. The result-
ing model is located on My. Even though it does not
satisfy the abstraction usually demanded for by con-
ceptual modelling, it is still beneficial to use a graphi-
cal notation that corresponds to that of the DSML de-
fined on M. Such a model would enable interactive
access to particular organizational units—and also al-
low for navigating to the specifications of respective
concepts on higher classification levels.

Modelling as Interactive Configuration: Instead

Power-Modelling - Toward a More Versatile Approach to Creating and Using Conceptual Models

Order Management e
File Window Browse Tools Help
Industry Subject Area Context Features Products Pricing
Automotive = || Contracting » | | credibility check || Liquids & | | fixed -
Banking [£] | Complaint Hand... [=| | create delivery n...[= | | Bulk Material |_:| customized |_:|
Food Retailing | | Reporting | | corporate custo... || Convenience —| | gquantity depend... —
Healthcare = | | Order Managem... = || private customers = | | Senvices = | | seasonal -
Focus Order Management 1 | Order Management 2
Customer Orientation
01 |=E=> »
02 |=E=> =

co3 ‘ _‘E—};’ i Decision Criteria

amount nol available

Cost Reduction @) credibility insufficient

CR1 ‘.—{_]4:__‘, l_: | @) deviating terms
R2 [=E=> —
CR3 |=E=> .

Speed Eﬁi’ SO

Order

Check Order
received

S1 ==
S2 |l

) delvery time impossible

Order not Notify Order
accepted Customer rejected

QOrder
accepted Order dispatched Invoice

Dispatch Order Create

Figure 4: Configuration through stepwise selection of intended model properties.

of creating a model bottom-up from the concepts pro-
vided by a modelling language, the following sce-
nario shows how a model can be created by combin-
ing reference models, application frameworks, multi-
level modelling and a common representation of mod-
els and code to not only create models more conve-
niently but to realize a corresponding implementation
at the same time. The scenario is based on the exis-
tence of a repository of various reference models that
were created with a set of integrated DSMLs. It is
aimed a modelling and thereby implementing an or-
der management system for food retailing. Fig. 4 il-
lustrates the use of a tool that facilitates the config-
uration of particular models from an existing set of
reference models. At first, the user would specify the
targeted domain by selecting options from lists pre-
sented by the modelling tool. Based on that selection,
a set of possibly fitting business process types would
be presented to the user. After selecting one business
process type, the user could refine the process model
by selecting from properties that are offered by the
system. In case, the control flow requires further mod-
ification, the user could modify it using a respective
DSML for business process modelling.

S CONCLUSIONS AND FUTURE
RESEARCH

The presented outline of a new approach to creating
and using conceptual models has a twofold motiva-
tion. On the one hand, it stresses the need for lean-
ing back once in a while and questioning assumptions
that we tend to take for granted. On the other hand,
it presents the cornerstones of a more versatile and
powerful approach to conceptual modelling. The pre-
sentation of the vision is focussed on illustrating the
idea in order to inspire a discussion about its benefits
and about potential enhancements. Nevertheless, the
required foundation, especially a multi-level language
architecture and a common representation of models
and code, is available. It has been developed during
the recent years (Frank, 2014b), (Frank and Strecker,
2009) and builds on a mature meta-programming lan-
guage (Clark et al., 2008b). While it required to give
up certain assumptions that we had taken for granted,
such as the rigid dichotomy of instantiation and spe-
cialization, it opens new ways of designing and imple-
menting systems that are represented to users as mod-
els on different levels of abstraction. This paradigm
shift requires not only giving up “standard” language
architectures like MOF (Object Management Group,
2006), but also replacing existing implementation lan-
guages. Therefore, it may be regarded by some as not
realistic. However, if we, at least in academia, do not

17

Fourth International Symposium on Business Modeling and Software Design

give up the widespread fixation on mainstream tech-
nology, progress will hardly be possible. There is still
a long way to go. Future research needs to address
the development of reference models on different lev-
els of abstraction that are specified with respective
DSML. There is also need to develop advanced pat-
terns of interaction that support the configuration and
modification of models. Last but not least, it is re-
quired to overcome the limitations of current imple-
mentation languages by moving to more flexible lan-
guages architecture like the one XMF is based on.

REFERENCES

Agrawal, A. (2003). Metamodel based model transfor-
mation language to facilitate domain specific model
driven architecture. In Crocker, R. and Steele, G.
L. J., editors, Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOP-
SLA 2003), pages 118119, New York. ACM.

Amoui, M., Derakhshanmanesh, M., Ebert, J., and Tahvil-
dari, L. (2012). Achieving dynamic adaptation via
management and interpretation of runtime models.
Journal of Systems and Software, 85(12):2720-2737.

Atkinson, C. and Kiihne, T. (2003). Model-driven devel-
opment: a metamodeling foundation. IEEE Software,
20(5):36-41.

Balz, M., Striewe, M., and Goedicke, M. (2010). Continu-
ous maintenance of multiple abstraction levels in pro-
gram code. In Proceedings of the 2nd International
Workshop on Future Trends of Model-Driven Devel-
opment (FTMDD 2010).

Blair, G., Bencomo, N., and France, R. B. (2009). Models @
run.time: Computer. Computer, 42(10):22-27.

Buckl, S., Matthes, F., Roth, S., Schulz, C., and Schweda,
C. (2010). A conceptual framework for enterprise ar-
chitecture design. In Proper, E., Lankhorst, M. M.,
Schonherr, M., Barjis, J., and Overbeek, S., edi-
tors, Trends in Enterprise Architecture Research, vol-
ume 70 of Lecture Notes in Business Information Pro-
cessing, pages 44-56. Springer, Berlin and Heidelberg
and New York.

Bunge, M. (1977). Treatise on Basic Philosophy: Volume
3: Ontology I: The Furniture of the World. Reidel,
Dordrecht.

Clark, T., Sammut, P, and Willans, J. (2008a). Applied
metamodelling: a foundation for language driven de-
velopment.

Clark, T., Sammut, P., and Willans, J. (2008b). Superlan-
guages: developing languages and applications with
XMF. Ceteva.

Ferstl, O. K. and Sinz, E. J. (2006). Modeling of business
systems using som. In Bernus, P., Mertins, K., and
Schmidt, G., editors, Handbook on Architectures of
Information Systems, International Handbooks on In-
formation Systems, pages 347-367. Springer, Berlin
and Heidelberg and New York.

18

France, R. B. and Rumpe, B. (2007). Model-driven devel-
opment of complex software: A research roadmap. In
Briand, L. C. and Wolf, A. L., editors, Workshop on
the Future of Software Engineering (FOSE ’07), pages
37-54. IEEE CS Press.

Frank, U. (2012). Specialisation in business process mod-
elling: Motivation, approaches and limitations. icb re-
search report, no. 51, university of duisburg-essen.

Frank, U. (2013). Multi-perspective enterprise modeling:
Foundational concepts, prospects and future research
challenges. online first: http://link.springer.com/
article/10.1007/s10270-012-0273-9. Software and
Systems Modeling.

Frank, U. (2014a). Enterprise modelling: The next steps.
Enterprise Modelling and Information Systems Archi-
tectures, 9(1):24—40.

Frank, U. (2014b). Multilevel modeling: Toward a new
paradigm of conceptual modeling and information
systems design. Business and Information Systems
Engineering, 6:accepted for publication.

Frank, U. and Strecker, S. (2009). Beyond erp systems: An
outline of self-referential enterprise systems: Require-
ments, conceptual foundation and design options. icb
research report, no. 31, university of duisburg-essen.

Grossmann, R. (1983). The Categorical Structure of the
World. Indiana University Press, Bloomington.

Kahneman, D., Slovic, P., and Tversky, A., editors (1982).
Judgment under uncertainty: Heuristics and biases.
Cambridge University Press, Cambridge and New
York.

Krogstie, J. (2007). Modelling of the people, by the peo-
ple, for the people. In Krogstie, J., Opdahl, A.,
and Brinkkemper, S., editors, Conceptual Modelling
in Information Systems Engineering, pages 305-318.
Springer Berlin Heidelberg.

Lakoff, G. (1990). Women, fire and dangerous things: What
categories reveal about the mind. Univ. of Chicago
Press, Chicago, 1 edition.

Lankhorst, M. M. (2005). Enterprise architecture at work:
Modelling, communication, and analysis. Springer,
Berlin and Heidelberg and New York.

Liskov, B. H. and Wing, J. M. (1994). A behavioral no-
tion of subtyping. ACM Transactions on Program-
ming Languages and Systems, 16:1811-1841.

Mellor, S. J. (2004). MDA distilled: Principles of model-
driven architecture. Addison-Wesley object technol-
ogy series. Addison-Wesley, Boston.

Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., and Sol-
berg, A. (2009). Models@run.time to support dy-
namic adaptation. /EEE Computer, 42(10):46-53.

Object Management Group (2006). Meta object facility
(mof) core specification: Version 2.0.

Pastor, O. and Molina, J. C. (2007). Model-Driven Architec-
ture in Practice: A Software Production Environment
Based on Conceptual Modeling. Springer, Berlin and
New York.

Proper, E., Lankhorst, M. M., Schonherr, M., Barjis, J., and
Overbeek, S., editors (2010). Trends in Enterprise
Architecture Research: 5th Workshop, TEAR 2010,

Power-Modelling - Toward a More Versatile Approach to Creating and Using Conceptual Models

Delft, The Netherlands, November 12, 2010, Proceed-
ings, volume 70 of Lecture Notes in Business Infor-
mation Processing. Springer, Berlin and Heidelberg
and New York.

Scheer, A.-W. (1992). Architecture of Integrated Informa-
tion Systems: Foundations of Enterprise Modelling.
Springer, Berlin and New York.

Song, H., Huang, G., Chauvel, F., Xiong, Y., Hu, Z.,
Sun, Y., and Mei, H. (2011). Supporting runtime
software architecture: A bidirectional-transformation-
based approach. Journal of Systems and Software,
84(5):711-723.

Stahl, T. and Volter, M. (2006). Model-driven software
development: Technology, engineering, management.
John Wiley, Chichester and England and Hoboken and
NJ.

Wiederhold, G., Wegner, P., and Ceri, S. (1992). Toward
megaprogramming. Commun. ACM, 35(11):89-99.

19

A Meta-architecture for Service-oriented Systems and Applications

Keywords:

Abstract:

Leszek A. Maciaszek'?, Tomasz Skalniak' and Grzegorz Biziel'
"Wroctaw University of Economics, Komandorska 118/120, 53-345 Wroctaw, Poland
’Macquaire University, Sydney, Australia
leszek.maciaszek@mq.edu.au, {tomasz.skalniak, grzegorz.biziel}@ue.wroc.pl

Meta-architecture, Architectural Design, Service-oriented Systems and Applications, System and Software
Complexity, Dependency Relationships, Software Quality, Software Adaptability, Holon Abstraction.

The paper proposes a new meta-architecture as a reference model for developing service-oriented systems
and applications. The seven-layer meta-architecture is called STCBMER (Smart Client - Template - Bean -
Controller - Mediator - Entity - Resource). The purpose of it is to reduce software complexity and ensure the
quality of adaptability defined as the degree to which an information system or application is difficult to
understand, maintain and evolve. The main difficulty stems from complex interactions (dependencies)
between system elements. The dependencies can be minimized if the system under development adheres to
the architectural design and can be verified by analysing the implementation code. The paper reinforces the
proposition that an architectural intent for adaptive complex systems requires some sort of hierarchical

layered structure (according to the holon abstraction as an approach to restraining software complexity).

1 INTRODUCTION

The main concern and objective of software
architectural design is to manage complexity in
resulting systems and applications. Software
complexity must not be higher than the complexity
of the problem domain addressed by the software. If
it is higher, we say that the software solution is over-
complex (unnecessarily complicated). The main
condition for lowering software complexity is to
base its architectural design on a complexity-
minimizing architectural framework or reference
model (i.e. a meta-architecture).

Complexity is an axiomatic, but relative concept,
which can only be properly interpreted by its
relation to its contrary notion of simplicity (Agazzi,
2002). Something is complex because it is not
simple, and vice versa.

Complexity is also a multi-faceted concept —
what is complex from one point of view may be
simple from another point of view. In other words,
complexity is the combination of several attributes,
which need to be examined separately “so that we
can understand exactly what it is that is responsible
for the overall “complexity”. Nevertheless,
practitioners and researchers alike find great appeal
in generating a single, comprehensive measure to
express “complexity”” (Fenton and Pfleeger, 1997).

20

In our opinion, a complexity measure, if one can
be generated, should be seen as an overriding
measure of systems and software quality. Therefore,
complexity is a derivative of characteristics
constituting system/application quality. As noted by
Robert Glass (2005) “the task of building quality
into software is almost the same as the task of
making it maintainable” (or adaptable in our
parlance).

The SQuaRE standard (ISO, 2011) identifies
eight quality characteristics, of which the quality of
maintainability represents the instrumentation side
of complexity. The standard identifies further five
sub-characteristics of maintainability: modularity,
reusability, analysability, = modifiability, and
testability. We believe that a better term for these
sub-characteristics is adaptability (or adaptiveness)
rather than maintainability. Adaptability is a broader
concept combining understand-ability as a
precondition of maintainability and maintainability
as a precondition of evolve-ability.

System/software adaptability is underpinned by
its complexity, measured as the count of (permitted)
dependency relationships in the system/software,
where: “A dependency is a relationship that signifies
that a single or a set of model elements requires
other model elements for their specification or
implementation. This means that the complete

A Meta-architecture for Service-oriented Systems and Applications

semantics of the depending elements is either
semantically or structurally dependent on the
definition of the supplier element(s).”(OMG, 2009).

In our research, we address the last of the five
deep questions in computing identified by Jeannette
Wing (2008): “(How) can we build complex systems
simply?”. We have argued that a valid answer to this
question is to construct system/software according to
dependency-minimizing meta-architecture (e.g.
Maciaszek and Liong, 2005).

The rest of the paper is organized as follows.
Section 2 summarizes the PCBMER meta-
architecture and makes a case for adjusting and
extending it to suit modern service-based systems
and applications. Section 3 defines the "service
enterprise” viewpoint on complexity and change
management in systems and applications. This
section introduces a new meta-architecture Smart
Client - Template - Bean - Controller - Mediator -
Entity - Resource (STCBMER). The meta-
architecture refers to the technology-specific
frameworks (used and validated on a large e-
marketplace project in the domain of Ambient
Assisted Living (AAL), but not used here as a case
study for the lack of space). The related work, the
conclusion and the future work sections close the
paper's discussion, and they are followed by the list
of references.

2 ARECAPOF THE PCBMER
META-ARCHITECTURE FOR
ENTERPRISE INFORMATION
SYSTEMS

The architecture informs how system/software
elements are interlinked. It abstract away from
implementation and it omits information not related
to interactions between elements. There can be many
levels of architectural abstraction. We distinguish
between a meta-architecture as a desired holonic
structure and concrete instantiations of it in
system/software under development. Those concrete
instantiations (or architectures) must conform to the
chosen meta-architecture so that the complexity-
minimization objective is achieved.

A layered, ideally holonic-like structure is the
first sine qua non condition for an architectural
solution leading to the production of adaptive
systems. The PCBMER is our original meta-
architectural proposal for such architectural
instantiations. The second sine qua non is the use of
managerial dependency analysis tools to ascertain

adaptability in concrete instantiations. The DSM is
our managerial tool of choice for dependency
analysis.

An architectural division into layers, apart from
complexity reduction, has many other advantages.
Without much trouble we can exchange components
within a layer, e.g. within the Presentation layer we
can change HTML pages to dynamic JSP pages.
Moreover, a layer can only communicate with
neighbouring layers and only in a single-directional
way (i.e. cyclic references are not permitted). As a
result, changes in a layer do not require changes in
independent layers (i.e. layers that do not depend on
the modified layer).

Figure 1 illustrates the PCBMER meta-
architecture modelled in UML and showing layers as
UML packages. There are six layers: Presentation,
Controller, Bean, Mediator, Entity, Resource (e.g.
Maciaszek, 2007). Figure 1 shows also Utility Data
Sources (typically databases) accessible exclusively
from the Resource layer.

PCBMER
Prese_ntation - : :
H
EET) — ! Cont_roller|

/
Resource

‘Utility Data Sources

Figure 1: The original PCBMER meta-architecture.

The Presentation layer represents the graphical
user interface (GUI) objects on which the data
(beans) from the Bean layer can be rendered. It is
responsible for maintaining consistency in its
presentation when the beans change. So, it depends
on the Bean layer.

The Bean layer represents the data classes and
value objects that are destined for rendering on GUL.
Unless data is entered by the user, the bean data is
built up from the entity objects (the Entity layer).

The Controller layer represents the application
logic. Controller objects respond to the Presentation
requests resulting from user interactions with the
system.

21

Fourth International Symposium on Business Modeling and Software Design

The Entity layer responds to Controller and
Mediator. It contains business objects retrieved from
the database or created for successive storage in the
database. Many entity classes are container classes
(i.e. they contain business objects and methods for
adding and removing objects as well as methods to
iterate over objects).

The Mediator layer mediates between Entity and
Resource classes. It manages business transactions,
enforces business rules, instantiates business objects
in the Entity layer, and in general manages the
memory cache of the application. Architecturally,
Mediator serves two main purposes. Firstly, to
isolate the Entity and Resource layers so that
changes in any one of them can be introduced
independently. Secondly, to mediate between the
Controller and Entity/Resource layers when
Controller requests data, but it does not know if the
data has previously been loaded from the database
into memory.

The Resource layer is responsible for all
communications with external persistent data
sources (databases, web services, etc.). This is where
the connections to the database servers are
established, queries to persistent data are
constructed, and the database transactions are
instigated.

The downward arrows between the PCBMER
layers signify acyclic dependency relationships.
Cyclic dependencies are the main characteristic of
over-complex systems and the culprit of the lack of
adaptability in such systems. The Downward
Dependency Principle (DDP) and the Cycle
Elimination Principle (CEP) are two main
architectural principles of PCBMER (Maciaszek and
Liong, 2005).

The DDP principle ensures that all message
dependencies (function calls) have downward
direction (message dependencies signify tightly
coupled communication, such as in Remote Method
Invocation (RMI) - not to be confused with
asynchronous messaging, such as in Java Messaging
Service (JMS)).

Higher PCBMER layers depend on lower layers,
but not vice versa (at least not from the viewpoint of
message dependencies). As a result, managing
change in lower layers is more troublesome and we
need to endeavour to apply extra care to designing
lower layers, so that they are more stable (i.e. more
resilient to changes).

The DDP principle is further constrained by the
Neighbour Communication Principle (NCP). This
principle ensures that objects can communicate with
distant layers only by utilizing chains of message

22

passing through neighbouring layers. Occasional
claims in the literature that such message passing
impacts performance are misguided, in particular in
the context of enterprise information systems in
which performance is invariably related to
input/output data transfers to/from databases
(performance penalty of in-memory processing is
negligible in this context).

The CEP principle demands that cycles of
messages are disallowed between objects. The
principle applies to objects of any granularity
(methods, classes, components, services, packages,
subsystems, etc.). This does not mean that call-backs
are disallowed. It just means that call-backs must be
implemented using other than straight message
passing techniques. The two principal techniques are
event processing and the use of interfaces,
sometimes combined to achieve a desired effect.
Additionally, clustering and de-clustering of objects
can result in elimination of some cycles. Maciaszek
and Liong (2005) contains a detailed description of
cycle-elimination techniques.

The Upward Notification Principle (UNP) is a
separately-listed principle to counteract the stringent
DDP rule and to enforce the CEP principle in
communications between layers. This principle
requires that lower layers rely on event processing
(publish/subscribe protocols) and interfaces to
communicate with objects in higher layers.

The PCBMER meta-architectural framework has
been created for and validated in development of
large scale 'stovepipe" enterprise information
systems and applications. The software production
in such projects is entirely in the hands and minds of
the software development team. However, modern
software production is not "stovepipe" any more.
Software development projects are not standalone
undertakings - they are endeavours in systems
integration. Complexity management and delivery of
adaptable solutions takes on a new dimension.

Firstly, the shift from systems development to
systems integration manifests itself on the software
level by the shift from synchronous message passing
to asynchronous event processing (Maciaszek,
2008a). This has an obvious business explanation.
Integration implies dependency on the code that is
not our own and not under direct control of the
developers (or rather integrators, to be precise).
Frequently, this is the code of our business partners
who are unlikely to open it up for synchronous
message passing from/to our code. But even in case
of the integration projects within the same
organization, the independent nature of separate
business processes (and the software supporting

A Meta-architecture for Service-oriented Systems and Applications

them) is unlikely to permit or warrant synchronous
interoperability. Moreover, whether integrating with
external systems or with internal systems,
synchronous message passing typically would
require some level of intervention in the source code
of the system we integrate with. Clearly, this is
almost never an option.

Secondly, and related to the systems integration
issue, another paradigm shift has been observed in
modern software production - the shift from in-
house software ownership to trusted provisioning of
service-based systems and applications. Grounded in
the Service Oriented Architecture (SOA) model of
computation, this shift has created a new dimension
to our understanding of software complexity and
delivery of adaptable Software as a Service (SaaS)
solutions. The first and foremost concern are the
implications for architectural design of such systems
and applications. This is discussed next.

3 THE STCBMER
META-ARCHITECTURE FOR
SERVICE ENTERPRISE

Founded on cloud computing, the SaaS phenomenon
exerts new business and pricing models for using
information systems without owning them. Service-
oriented systems have emerged as a new scientific
abstraction allowing orchestration of service
resources and processes according to value
propositions (co-creation of value).

Service systems and applications have become a
commodity - like telephone, water, energy, gas, etc.
Associated with this observation, several
dichotomies have emerged. On one hand, software
products are servitized; on the other hand, software
services are productized (Cusumano, 2008). On one
hand, vendors of Component of the Shelf (COTS)
enterprise information systems use Internet as a
service delivery mode; on the other hand,
productized services are delivered over Internet as
enablers and productivity enhancers in the service
economy.

The above dichotomies have posed new
challenges on the very idea of complexity and
change management in a modern-age service
enterprise. The responsibilities for complexity and
change management have shifted to producers and
suppliers/vendors of service systems and
applications, but much of the risk is endured by the
enterprises receiving/buying the services. It comes
as no surprise that enterprises seek to alleviate the

risks and try not to lose control over their own
destiny.

The main objective and sine qua non in such
service enterprises must be to ensure the adaptability
of received service systems and applications. This in
turn implies a demand for a layered, modular and
dependency-minimizing architecture in such systems
and applications, so that the service enterprise can
understand, maintain and evolve its software
solutions. In this context, it does not matter if a
service system or application is delivered as a
complete SaaS solution or it is delivered as
componentized web services from which a system or
application is constructed. In all cases a level of trust
between providers and recipients of services is
necessary, and in all cases we need to ensure the
quality of adaptability in service solutions.

Interestingly, but also paradoxically, the service
systems and applications are built on the
technologies that, by their very nature, support
adaptability. The concepts such as loose coupling,
abstraction, orchestration, implementation neutrality,
configurability, discoverability, statelessness,
immediate access, etc. are exactly the ideas of
adaptable architectural design. In the remainder of
the paper, we propose a meta-architecture for
adaptable architectural design of SOA systems and
applications. The meta-architecture has evolved
from the PCBMER meta-architecture and it is called
Smart Client - Template - Bean - Controller -
Mediator - Entity - Resource (STCBMER).

The seven layers of the STCBMER meta-
architecture can be grouped into three main
architectural modules as shown in Figure 2. The
three modules - Smart Client Logic, Application
Logic, and Business Logic - work in different
address spaces separated by the technology of web
services. The SOA technology is responsible for
discovering web services, providing service binding,
and orchestrating an exchange of information
through web service interactions. The service
discovery dependencies can be realized through
WSDL (Web Services Description Language). The
service binding dependencies can be realized
through SOAP (Simple Object Access Protocol) or
REST (Representational State Transfer) invocations.

23

Fourth International Symposium on Business Modeling and Software Design

|l

~ Smart Client Logic

Web Service Interface

Ee=A = = =
~ Application Logic
Web Service Interface

Business Logic \

Figure 2: The main modules of the STCBMER meta-
architecture.

Figure 3 shows the layered model of the
STCBMER meta-architecture. Layers are
represented as the UML packages. In the discussion
that follows we identify possible technologies for the
packages and sub-packages (based on the ones that
we have used in a specific instantiation of the meta-
architecture in a large project that has served as a
validation platform for our architectural vision).

The arrows between the STCBMER packages
and sub-packages signify message dependencies.
Figure 3 shows also the connectivity from the Smart
Client layer to a Web Browser as a typical user
interface and the connectivity from Resource to
Utility Data Sources.

The most independent and therefore most stable
layer is Resource. The Resource is a layer
responsible for communication with Utility Data
Sources (relational databases, NoSQL databases,
LDAP directories, etc.). It contains tools to
communicate with the database, manage database
sessions, construct database queries, etc. Being the
most stable layer, it allows easy switching between
data sources without making changes in higher
layers. The Resource connects to a data source,
constructs queries and allows building Entity objects
(by Mediator) based on various data sources. The
SQL-Alchemy framework is a possible technology
for the Resource layer.

The Entity layer contains two sub-layers: Entity
Object and Entity Object Adapter. The Entity Object
package holds business entities, which are mapped
(loaded) from data sources. They can be mapped
from one or more database tables or views using
well known mapping patterns.

ORM (Object-Relational Mapping) frameworks,
such as SQL-Alchemy, provide two ways of
defining concrete mappers: mapping can be defined
as an external class or it can be defined directly in an
entity object class. In theory, better and cleaner way
is to define the mapper as the external mapping
class. In practice, mapping directly in the entity
object class may be preferred because in the external

24

mapping all database relationships are added
dynamically to the entity object class and are not
directly visible in the code as accessible attributes
(when for example SQL-Alchemy is used).

A

Smart Client Logic‘i

1

Smart Client

JavaScript Template I
JavaScript Bean
v

avaScript Controller
.. d2¥@5EHRE ConbieRen, o ﬁ JavaScript Web Service Connector |

Application Logic

Template

Controller

= -
Bean Serializer ‘

Bean

[4
Bean Object Adapter :
~ Bean Object 7E}

|Applicat‘ron Web Services Definition|

o I i
Application viewr

v
[Application Web Services Connector |

Business Logic

= Mediatior
Entity™ Entity i

v
! | Entity Object Adapter|| i
! |~ Entity Object -

el
‘ Business Web Services Definition

— 5
Business Vief e

v

1
Resource
Utility Data Sources

Figure 3: The STCBMER meta-architecture.

The Entity Object Adapter package is a set of
classes, which represent entity objects which are
serialized and ready to send via a web service. Also
every entity object adapter class decides which
attributes of the original entity object should be
visible to external applications (web services
consumers). JSON-based (JavaScript Object
Notation) representation might be a good choice,

A Meta-architecture for Service-oriented Systems and Applications

especially if the web service is built with a REST
Web Service. JSON is a native JavaScript type, so it
suits well web programming, and it is a reasonable
alternative to the XML (eXtensible Markup
Language).

The Mediator layer is responsible for managing
business transactions and business rules as well as
loading and unloading business objects (entity
objects). This layer manipulates entity objects and
defines a kind of Facade pattern, which offers access
to them: getting, saving, creating, deleting, editing
and caching.

As a technology-specific example, the Mediator
could use the SQL-Alchemy or other ORM
framework to communicate with the Resource layer
(which also could be based on the SQL-Alchemy) to
load/unload entity objects. Entity objects
manipulation (the Mediator) could be available as a
set of simple Python functions as well as a set of
web services defined with the Pyramid web
framework (as in our platform of choice) and
accessible via the REST interface. Those functions
should be defined in the Business View sub-package
and are called “business views”.

To construct a web service (view) from a Python
function, a programmer can use a special decorator
(Decorator pattern) provided by the Pyramid
framework. Since all web methods (views) are
available via the REST (Representational State
Transfer) interface, every web service should be
accessible with a given URI (Uniform Resource
Identifier). Routing from a given URI to a specific
web service is done by the Pyramid itself. This
functionality in the STCBMER meta-architecture is
realized by the Business Web Service Definition
package (and analogously by the Application Web
Service Definition package in the Application
Layer).

In the SOAP-based web service the Business
Web Service Definition package should also build a
WSDL document describing the web API
(Application Programming Interface) of the
Business Logic. If the API is built as a REST
interface, this package should also define the
mappers (routes) from a specific URI to a given
view (web service). In the Pyramid web framework
all the routes are defined by programmers using
regex (regular expression) patterns. To serialize and
send business objects via the REST interface, the
Mediator uses the Entity Serializer. Every serialized
entity object is a JSON object, with structure defined
in the Entity Object Adapter package.

The Controller layer defines the application logic
(different from the Mediator's business logic). In our

technology-specific scenario, the application logic is
captured in a set of functions (Application View
sub-package) accessed as pure Python functions or
web services. Each function (web service) is called a
view (just like in the Mediator layer). The Controller
uses the Mediator to get entity object adapters to
create and operate on Bean objects. Mapping
between the Entity Object Adapter and the Bean
Object classes is done by the Application View
package. Because the Mediator is accessed via the
REST interface, there is a need to cover the REST
communication with a Facade component
responsible for a networking communication.

The Controller is equipped with the Application
Web Service Connector sub-package used by
application views to realize the Mediator
communication and orchestration. All web services
(views) are available through the REST interface.
This is why the Controller contains the Application
Web Service Definition sub-package, which can be
built with the Pyramid framework, and works in the
same way as an analogue package in the Mediator
layer.

Controller's views return different types of data.
Sometimes they pass prepared data to the Template
package (bean objects) to get from it an HTML
document. Sometimes views provide only pure bean
objects in the serialized (JSON) notation (bean
object adapters — analogously to entity object
adapters). This kind of data can be used by different
web services, for example JavaScript Controllers or
other applications.

In Figure 3 we present only one application
consuming the Business Layer (plus the Smart
Client application), but in the STCBMER model the
Business Layer can serve the business services (as
web services) to more than one application written
in various technologies.

The Bean layer is just a set of classes that define
application objects. Objects of those classes can be
used by the Template layer to generate the web
front-end (HTML, CSS, eventually JavaScript). But
in some cases Bean objects are just returned as a
result of invoking an application view (a web
service). In this case they are mapped by the Bean
Serializer to the bean object adapters. Bean objects
are defined dynamically by Controller views and can
be stored in JSON notation, which is close to a
native type of Dictionary in Python and it is a native
type for the JavaScript language. The JSON notation
is nowadays widely used in web systems because the
text representation of JSON objects (which in the
end is sent via HTTP) is quite lightweight and easy
to parse in various technologies.

25

Fourth International Symposium on Business Modeling and Software Design

The Template layer is responsible for generating
a web front-end using Bean objects (prepared by the
Controller module in views). While views
(Controller) construct data to be displayed, the
Template is responsible for how data will be
displayed. In our technology-specific solution, the
Template layer uses the Mako template library
written in Python and is responsible for generating
HTML documents (sometimes with some additional
CSS and JavaScript, if the documents have to be
prepared dynamically). In general the Template
layer is used also to generate different types of
documents which might be needed by wvarious
remote applications/systems.

The Smart Client layer consists of the JavaScript
Controller, JavaScript Template, JavaScript Bean
and JavaScript Web Service Connector. In our e-
marketplace project (not described here, as
mentioned in passing), all modules except the
JavaScript Web Service Connector are provided by
the Angular.js framework, which is based on the M-
V-VM (Model-View-ViewModel) pattern. This
pattern is used by a large number of web
frameworks, also by JavaScript frameworks,
working usually in a homogeneous memory
environment (all objects can access each other).

The ViewModel listens to the Model object
(usually as a Subscriber), and after triggering an
event, does some application logic (for example
changing the state of other Model objects). In the
end, the ViewModel can publish its own event
object, so that the View (which is usually a
Subscriber) could re-render the user interface based
on ViewModel attributes (which the ViewModel
defines for each Model — similar to the Adapter
pattern). Of course, the Angular.js framework is just
our platform of choice for the Smart Client layer in
our e-marketplace project and it could be realised
with different technologies based on various patterns
(M-V-VM is just an example).

The STCBMER meta-architecture is an
extension of the PCBMER meta-architecture to cater
for service-oriented systems and applications. Both
meta-architectures share the same complexity-
minimizing architectural principles. The four
principles discussed earlier (namely CEP, DDP,
UNP, and NCP) are all honoured by the STCBMER
meta-architecture.

4 RELATED WORK

The word "architecture" is an overloaded term in
computing. It is used to denote physical architectural

26

design as well as logical architectural design. In its
physical meaning, it refers to the allocation of
software components, and communication patterns
between them, to computing nodes forming
architectural tiers. In its logical meaning (as
addressed in this paper), it refers to the allocation of
software components, and communication patterns
between them, to computing packages forming
architectural layers. In between these physical and
logical meanings, there are various mixed uses of the
word "architecture", including SOA, ADL
(Architecture Description Language), Enterprise
Architecture, etc.

Although the term "architecture" is overloaded
and even overused in the literature, it comes as a
surprise that very little research has been reported on
layered architectural design for the development of
software systems and applications. While complete
meta-architectural proposals are difficult to find, the
literature is full of architectural guidelines and
patterns of which the Core J2EE Patterns (Alur et
al., 2003) and the PEAA (Patterns of Enterprise
Application Architecture) (Fowler, 2003) have made
most impact on our work.

The philosophical underpinning of structuring
our models of meta-architectures into hierarchical
layers comes from the holonic approach to science
as the most promising way to take control over
complexity of artificial systems (Koestler, 1967
Koestler, 1980; Capra, 1982; Agazzi, 2002). Apart
from dismissing network structures as untenable for
construction of complex adaptive systems, the
holonic approach explains so called SOHO (Self-
regulating Open Hierarchic Order) properties in
biological systems. These properties provide a basis
for better understanding of human-made systems
and how adaptive complex systems should be
modelled.

Software complexity underpins all efforts to
achieve software quality. Software quality models
and standards, such as SQuaRE (ISO, 2011), tend to
concentrate on software product quality, but
recognize that it is not possible to produce a quality
product without having a quality process that defines
lifecycle activities. It is in the very nature of
software engineering that a major activity within a
software quality process is change management.

There is a growing body of research on service
change management (e.g. Wang and Wang, 2013),
but we do not know of published works that would
link change management in service-oriented systems
to architectural design as the crux of complexity
management and software adaptability.

A Meta-architecture for Service-oriented Systems and Applications

Similarly with regard to software metrics - a
huge number of generic software metrics have been
proposed (e.g. Fenton and Pfleeger, 1997). There
exist also proposals of metrics targeting service-
oriented systems (e.g. Perepletchikov and Ryan,
2011). However, the metrics are not sufficiently
linked to the quality assurance processes that would
be enforcing architectural design in the software. In
other words, the metrics are reactive rather than
proactive.

The same observation applies to the DSM
method as a visualization of software complexity as
well as a vehicle for calculating complexity metrics
(Eppinger and Browning, 2012; Sangal et al., 2005).
The expressive power of DSM has been mostly used
for discovering complexity problems in the software,
and for fixing problems like cyclic dependencies,
but there is a lack of tangible results reporting
round-trip engineering use of DSM to control
software complexity.

5 CONCLUSION

The introduction and description of the STCBMER
meta-architecture is a contribution of this paper.
When we started working on a meta-architecture
proposal for service-oriented systems and
applications, we expected a notable departure from
our PCBMER meta-architecture developed for
conventional enterprise systems. It has turned out
that STCBMER and PCBMER are similar.

The STCBMER introduces one new layer built
with JavaScript and few new sub-packages. A web
browser is now an explicit part of the new model.

The Entity and the Bean layers are now defined
with more details. Each consists of two sub-
packages: one containing the real objects (the Entity
Object and the Bean Object) and the second
representing objects ready to send via a web service
interface (the Entity Object Adapter and the
Application Object Adapter).

To map business/application objects to proper
adapters, special packages are introduced: the Entity
Serializer and the Bean Serializer. Since the
communication between the Smart Client Logic, the
Application Logic and the Business Logic is
organized with a web service technology, special
web service packages are introduced. The first type
of packages needed to organize a web service
communication, are packages which contain the API
definition: the Business Web Service Definition and
the Application Web Service Definition. Those
packages define how the API of each layer looks

like. The second type of packages are web service
connectors: the JavaScript Web Service Connector
and the Application Web Service Connector.

Some differences between STCBMER and the
PCBMER can be noticed in dependency
relationships. New dependencies exist to reflect the
fact that the new meta-architecture works in a web
service environment. For example in the PCBMER
the direct dependency between Controller and the
Entity (Controller’s objects construct Bean objects
from the Entity objects) is in the STCBMER defined
as a dependency between the Controller package and
the Entity Object Adapter package. But since the
Entity Object Adapter is a sub-package of the Entity
package, dependency between the Controller and the
Entity layers still exists.

Other differences can also be noticed — not in the
architecture definition but in default technical
environment. The PCBMER has not been defined to
work in a web environment, or in a service-oriented
model. The STCBMER is an elaborated version of
PCBMER designed to be able to work in those
environments.

6 FUTURE WORK

The STCBMER meta-architecture proposed in this
paper has been validated in the field on a large
project for the e-marketplace domain. However, the
usability of the meta-architecture is only a partial
proof of its value. In the follow-up research we need
to develop concrete metrics that can be used to
measure complexity of comparable versions of
software designs and systems built according to the
STCBMER framework.

The metrics will measure dependency
relationships in software. To this aim, we first need
to classify all kinds of dependencies in service-
oriented systems and applications that have a clear
impact on software complexity. At the beginning we
will concentrate on coarse-grained dependencies:
message dependencies (addressed in this paper, but
not in the context of metrics), event dependencies
and interface dependencies. For the service-oriented
systems and applications, a special attention will
need to be placed on the interface dependencies as
they constitute the essence of web services. As an
important aspect of our future research, we will need
to discuss the strengths/weights of various kinds of
dependencies on the complexity and adaptability of
software.

We stress that the complexity metrics are not
absolute measures — their value is only in

27

Fourth International Symposium on Business Modeling and Software Design

comparison to other (previous) versions of
system/application architectural designs and in
successive versions of software products. In
Maciaszek (2008b) we discussed the ways of using
DSM (Dependency Structure Matrix) for the
analysis and comparison of system/software
complexity. Today many tools exist that support the
DSM method and that additionally integrate with
popular IDE-s, such as Eclipse, Visual Studio or
IntelliJ.

The tool support is important here as the
complexity management has both forward and
reverse-engineering dimension. The software needs
to be forward-engineered according to its
architectural design, but we also need to validate the
code conformance with the architectural principles.

Contemporary tools offer visualization of
dependencies in the code-base not just at particular
levels, such as method-to-method, class-to-class,
directory-to-directory, but also across levels, such as
function-to-type, namespace-to-class, jar-to-method.
One of such tools is Structure101 (Structure, 2014).

Structure101 and most other tools are
predominantly reverse engineering tools, more
reactive than proactive. Structurel01 provides,
however, a specialized module, called Architecture
Development Environment (ADE), to define
architectural rules and guide conformance inside an
IDE. The “proactivity” remains at the architecture
(instantiation) level and meta-architecture is offered
by the tool itself, but we plan to use ADE to define
the STCBMER principles for various industrial
studies and software development projects.

REFERENCES

Agazzi, E., 2002. What is Complexity? In Agazzi, E.,
Montecucco, L. (Eds) Complexity and Emergence.
Proceedings of the Annual Meeting of the
International Academy of the Philosophy of Science,
pp. 3-11, World Scientific.

Alur, D., Crupi, J., Malks, D., 2003. Core J2EE Patterns:
Best Practices and Design Strategies, 2nd ed.,
Prentice Hall.

Capra, F. (1982): The Turning Point. Science, Society, and
the Rising Culture. Flamingo.

Cusumano, M.A., 2008. The Changing Software Business:
Moving from Products to Services, IEEE Computer,
January, pp.20-27.

Eppinger, S.D., Browning T.R., 2012. Design Structure
Matrix Methods and Applications, The MIT Press.
Fenton, N.E., Pfleeger, S.L., 1997. Sofiware Metrics. A

Rigorous and Practical Approach, 2nd ed., PWS
Publishing Company.
Fowler, M., 2003. Patterns of Enterprise Application

28

Architecture, Addison-Wesley.

Glass, R.L., 2005. The Link Between Software Quality
and Software Maintenance. [T Metrics and
Productivity Journal, November, p.29.

ISO, 2011. International Standard ISO/IEC 2510: Systems
and Software Engineering - Systems and Software
Quality Requirements and Evaluation (SQuaRE) -
System and Software Quality Models, ISO/IEC.

Koestler, A., 1980. Bricks to Babel, Random House.

Koestler, A., 1967. The Ghost in the Machine, Penguin
Group, London.

Maciaszek, L.A., 2008a. Adaptive Integration of
Enterprise and B2B Applications. In Filipe, J.,
Shishkov, B., Helfert, M. (Eds), ICSOFT 2006, CCIS
10 Springer-Verlag.

Maciaszek, L.A., 2007. An Investigation of Software
Holons - The 'adHOCS' Approach. In Argumenta
Oeconomica Vol.19, No.1-2, pp.1-40.

Maciaszek, L.A., 2008b. Analiza struktur zaleznosci w
zarzadzaniu intencja architektoniczng systemu
(Dependency Structure Analysis for Managing
Architectural Intent), In Huzar, Z., Mazur, Z. (Eds),
Inzynieria Oprogramowania — Od Teorii do Praktyki,
pp-13-26, Wydawnictwa Komunikacji i Eacznosci,
Warszawa.

Maciaszek, L.A., 2009. Architecture-Centric Software
Quality Management, In Cordeiro, J., Hammoudi, S.,
Filipe, J. (Eds), Web Information Systems and
Technologies, WEBIST 2008, LNBIP 18, Springer.

Maciaszek, L.A., 2006. From Hubs Via Holons to an
Adaptive Meta-Architecture — the “AD-HOC”
Approach. In Sacha, K. (Ed.), IFIP International
Federation for Information Processing, Vol. 227,
Software Engineering Techniques: Design for Quality,
pp.1-13, Springer.

Maciaszek, L.A., Liong, B.L., 2005. Practical Software
Engineering. A Case-Study Approach. Addison-
Wesley.

OMG, 2009. Unified Modeling Language™ (OMG UML),
Superstructure, Version 2.2.

Perepletchikov, M., Ryan, C., 2011: A4 Controlled
Experiment for Evaluating the Impact of Coupling on
the Maintainability of Service-Oriented Software,
IEEE Trans. On Soft. Eng., Vol. 37, No. 4, pp.449-465

Sangal, N. Jordan, E. Sinha, V., Jackson, D., 2005. Using
Dependency Models to Manage Complex Software
Architecture, In Procs. OOPSLA’05, pp.167-176,
ACM.

Structure, 2014. Structurel0l, http://structurel01.com/,
viewed February 2014.

Wang Yi., Wang Ying (2013). A Survey of Change
Management in Service-Based Environments, In
SOCA, pp.259-273, Springer

Wing, J.M., 2008. Five Deep Questions in Computing.
Comm. of the ACM, Vol. 51, No.1, pp.58-60.

Improving Computer-Support for
Collaborative Business Model Design and Exploration

Marin Zec', Peter Diirr?, Alexander W. Schneider' and Florian Matthes!

1 Fakultdt fiir Informatik, Technische Universitit Miinchen, Boltzmannstr. 3, 85748 Garching, Germany

2Applied Social Sciences, Munich University of Applied Sciences, Am Stadipark 20, 81243 Miinchen, Germany

Keywords:

Abstract:

{marin.zec, alexander.schneider, matthes} @tum.de, peter.duerr@hm.edu

Business Model Innovation, Business Model Canvas, Business Model Development, Business Model
Exploration, Morphological Analysis, Computer-Aided Business Model Design, Computer-Aided Business
Model Generation, Group Dynamics

Finding a viable and sustainable business model is a major challenge not only for startup companies. Estab-
lished companies are re-thinking their existing business models and explore new business opportunities. The
Business Model Canvas is currently one of the most popular frameworks for business model innovation. While
computer-aided design (CAD) tools are well-established in mechanical engineering, business model design is
still mostly done using pen-and-paper methods. In this paper, we (1) discuss benefits and shortcomings of
the Business Model Canvas approach, (2) show how it can borrow techniques from General Morphological
Analysis to overcome shortcomings, and (3) derive three key requirements for future collaborative CAD tools
for business model design. Our analysis contributes to an understanding of how software support can improve

collaborative design and evaluation of business models.

1 INTRODUCTION

Business model innovation plays an increasingly im-
portant role for both startup as well as mature com-
panies due to increasing competition (Mitchell and
Coles, 2003; Mitchell and Coles, 2004). On one hand,
the primary organizational goal of startup companies
is to generate a viable business model — sometimes re-
sulting in disruption of whole markets. On the other
hand, established companies primarily aim to execute
their business model as efficiently as possible. As a
result, they tend to struggle with rapid and/or pro-
found market changes.

However, many established companies realize the
strategic importance of business model innovation for
the sustainability of their organization (e.g. Ama-
zon Web Services, a collection of cloud computing
services offered by Amazon.com in addition to their
primary e-commerce business). Consequently, an
increasing number of companies strive for continu-
ous business model innovation. They pursue vari-
ous strategies to do so, such as promoting and estab-
lishing intrapreneurship, corporate venturing or cre-
ation of corporate venture capital units. Examples in-
clude Google Ventures, Siemens Venture Capital and
Unilever Ventures. Still business model innovation re-

mains to be a complex problem for both startups and
more mature companies (Chesbrough, 2010).

Business model innovation is typically conducted
in teamwork since expertise in different domains such
as marketing, engineering and accounting is needed
for holistic business model design. However, each
expert tends to maintain his/her domain-specific men-
tal model and terminology. Boundary objects make
collaboration across different groups possible since
they provide a common point of reference for discus-
sion and collaboration. Individuals/groups with dif-
ferent background can interpret them differently with-
out surrendering the shared boundary object’s iden-
tity (Carlile, 2002). The Business Model Canvas
(BMC) (Osterwalder and Pigneur, 2010), an artifact
designed to facilitate business model design by pro-
viding a problem structure and focus of thought (Ep-
pler et al., 2011), can serve as boundary object for
business model innovation.

The BMC was at first proposed as a pen-and-paper
or whiteboard tool for business model design work-
shops. However, Osterwalder et al. (2013) call for
CAD software for business modeling since they ex-
pect it to yield benefits for strategic planning similar
to the benefits and features CAD software brought to
engineering or architecture, e.g. “[...] speed, rapid

29

Fourth International Symposium on Business Modeling and Software Design

prototyping, quicker visualization, better collabora-
tion, simulation, and better planning [...]”.

In this paper, we discuss the strengths and short-
comings of state-of-the art BMC software (e.g. facil-
itation capabilities). We introduce General Morpho-
logical Analysis as a powerful technique for complex
problem modeling and argue, that the design of CAD
software for business model design should borrow
useful concepts from computer-aided General Mor-
phological Analysis. The contribution of this paper
is the identification of three key requirements for col-
laborative CAD software for business model design.

2 BUSINESS MODEL CANVAS

The BMC gained popularity in practice since it pro-
vides a simple framework and, as a result, facilitates
structured discussion about a hypothesized or actual
business model. The BMC promotes visual thinking
and a holistic perspective on a business model. Visual
thinking is a way to develop and clarify ideas about
designs and acts as a catalyst for new ideas (Bux-
ton, 2007). Furthermore, part of the power of visuals
is their ability to serve as a visible external memory
(Baddeley, 1998). Particularly whiteboards are an ef-
fective medium for visual thinking due to their free-
form nature (Walny et al., 2012).

The BMC is a visual one-page template for de-
scribing a business model (Osterwalder and Pigneur,
2010). The BMC comprises four perspectives on a
business model: Customers, Offer, Infrastructure, and
Financial Viability. Each perspective subsumes one or
more business model building blocks; (1) Customer:
Customer Segments, Customer Relationships, Chan-
nels, (2) Offer: Value Propositions, (3) Infrastructure:
Key Activities, Key Resources, Key Partners, and (4)
Financial Viability: Cost Structure, Revenue Streams.
The BMC is comprised of nine building blocks in to-
tal (see Figure 1).

The BMC is based on the Business Model On-
tology developed in (Osterwalder, 2004). The key
idea of the BMC is to provide a simple and com-
mon visual framework for communicating and de-
veloping business models. The BMC reached wide
adoption among practitioners such as business devel-
opment units, startup companies or seed accelerators.

There is no mandatory sequence according to
which the building blocks of the canvas have to be
worked out (Fritscher and Pigneur, 2010). Since the
building blocks are interrelated, various elements of
the business model have to be modified during mul-
tiple iterations anyway. However, many practitioners
start with identifying customer segments (Who are we

30

creating value for?) or the value proposition (Which
value are we creating?) and iterate over all remaining
blocks.

Irrespective of which starting point was chosen,
the business model designers scrape through the re-
maining building blocks in a sequence that seems rea-
sonable to them. They jump back and forth to refine
the business model until they are satisfied. During the
process, alternative versions can be sketched out on
separate canvases or on the same canvas using differ-
ent colors. The finished BMC represents a business
model hypothesis and serves as a basis for subsequent
steps in the business model innovation process such as
validation or implementation.

In a workshop setting, the BMC can be printed out
on a poster or sketched on a whiteboard to provide a
shared display. The simple structure and the visual
arrangement of the building blocks provide a shared
language and point of reference for group discussions.

A major advantage of the pen-and-paper or white-
board approach is that elements (i.e. ideas) can be
added, edited, moved around and, if necessary, re-
moved spontaneously. Thus, the current state of the
group discussion is captured at any time and group
members do not forget ideas in the heat of the dis-
cussion. The use of color coding, drawings and rear-
rangement of elements helps maintain a clear organi-
zation of the canvas elements.

2.1 Software Support for BMC

A major drawback of the pen-and-paper as well as
whiteboard approach is that the BMC cannot easily
be shared with interested stakeholders. In addition,
the more elements the canvas contains the harder it
is to keep track of them since it gets more and more
difficult to maintain clarity.

One way to share a physical BMC is to take a dig-
ital picture of it and send the picture to the relevant
stakeholder. Another way is to (re)create the canvas
using text-processing/graphics/slide-based presenta-
tion software or embedding the picture in an elec-
tronic document. In any case, creating a BMC using
generic software tends to be rather time-consuming
(Fritscher and Pigneur, 2010).

Despite a lack of thorough scientific investiga-
tion on the effectiveness of BMC mapping soft-
ware (Eppler et al., 2011), various BMC mod-
eling tools emerged for computer-aided business
model design to facilitate easier sharing while pro-
viding specific modeling facilities well adapted for
the BMC. CAD software for business model design
based on the BMC ranges from rather lightweight
browser-based canvas tools such as BM|DESIGN|ER

Improving Computer-Support for Collaborative Business Model Design and Exploration

Key Partners Key Activities Value Customer Customer
Propositions Relationships Segments
Key Resources Channels

Cost Structure

Revenue Streams

Figure 1: The Business Model Canvas (Osterwalder and Pigneur, 2010).

¥ i - Sype- ricle
& = C { https://bmfiddle.com/f/#/ylSnj %O v =
Ped

& »

Skype % yIsnj
Example from Business Model Generation
Key Parners ey Activities

Payment Providers

Distribution Partners Mass Customized

People who want to
call phones

Telco Partners

Free Internet & Video
Key Resources Caling Channels

Cheap Calls to Phones
Software Developers | (SkypeOut) Skype.com

Software Headset Partnerships

Cost Structure

Software Development Complaint Management Free SkypeOut Prepaid or
Subscription

Figure 2: Screenshot of Business Model Fiddle

(Steenkamp, 2012).

(Fritscher and Pigneur, 2010), Business Model Fiddle
—Fig. 2(Steenkamp, 2012), Canvanizer (Proud Sourc-
ing GmbH, 2011) and Strategyzer (Business Model
Foundry GmbH, 2013) over meta-model-based wiz-
ards (Hauksson and Johannesson, 2014) to rich desk-
top software suites, e.g. BiZZdesign Architect (BiZ-
Zdesign, 2004).

Eppler et al. (2011) compared the use of generic
slide-based presentation software to BMC mapping
software. Their study found a positive effect of the
BMC on perceived collaboration and a negative ef-
fect on perceived creativity. The authors conclude
“that artefacts can have considerable power in shap-
ing group interactions and idea generation in the con-
text of business model innovation” and call for further
research on visual artefacts used to facilitate business
model innovation.

2.2 Benefits of BMC Software

Particularly collaborative, web-based BMC soft-
ware offers two major advantages over pen-and-
paper/whiteboard sessions and general-purpose soft-
ware:

1. Support for Distributed Teams. Web appli-
cations facilitate collaboration across time, lo-
cation and organizational boundaries. Since
teams are often distributed in terms of at least
one of these dimensions, software-based business
modeling saves costs in comparison to pen-and-
paper/whiteboard workshops.

2. Easier and More Flexible Customization, Re-
use and Sharing. Canvas elements can be easily
customized in terms of coloring, typography and
position. Various media can be embedded (e.g.
images, video or spreadsheets). Canvases can be
saved in various formats, re-opened for further re-
finement and easily shared with stakeholders.

We analyzed three popular web-based BMC mod-
eling tools: Business Model Fiddle, Canvanizer, and
Strategyzer. All tool sticks to the one-page layout of
the paper template for their main view. The tools
differ slightly in the way how building blocks can
be filled with content and how elements can be cus-
tomized. Some tools offer features which extend the
original idea of the BMC. For instance, Strategyzer
provides a financial estimator. Strategyzer and Can-
vanizer offer real-time collaboration, i.e. concurrent
editing and chat support. Business Model Fiddle
allows many customization of the canvas (e.g. re-
naming of building blocks) and the creation of snap-
shots to record changes. In addition, designers can
sketch on uploaded images and assign them to build-
ing blocks.

The main benefits of CAD for the BMC approach
is the support for collaboration across time, location

31

Fourth International Symposium on Business Modeling and Software Design

and organizational boundaries as well as reuse. The
analyzed tools mimic a paper/whiteboard and exploit
benefits of information technology. However, there is
little facilitation support since in both, on-site meet-
ings and asynchronous distributed modeling sessions,
many methodological questions such as finding a rea-
sonable starting point have to be answered by the
modelers. None of the analyzed tools guides busi-
ness modelers through the process. While sticking to
the one-page layout, they slightly differ in the way
how building blocks can be filled with content and el-
ements be customized.

2.3 BMUC and Facilitation

The role of the BMC in business model design is sim-
ilar to the notion of grammatical design which con-
stitutes boundaries within which designers can find
creative solutions if they deviate from standard solu-
tions (Brown and Cagan, 1996). The BMC frames
the discussion and predetermines the general struc-
ture of the boundary object. BMC designers tend to
“think ‘within’ the given domains of the template”
(Eppler et al., 2011). They are supposed to be creative
within said domains. However, there is little guid-
ance on how to make use of one’s full creative poten-
tial. In practice, groups often ideate through sponta-
neous associations between concepts. Thus, the busi-
ness model design process that supplements the BMC
is intentionally informal and generic. It consists of
five phases which do not necessarily have to be gone
through in a linear manner (Osterwalder and Pigneur,
2010): (1) Mobilize (i.e. preparation), (2) Understand
(i.e. research and analyze the context), (3) Design
(i.e. generation of business model hypotheses using
the canvas), (4) Implement (i.e. implementing the best
hypothesis in the field), and (5) Manage (i.e. moni-
tor the market and update the business model accord-
ingly). The process model does not prescribe what to
do in a specific phase. Instead, the authors refer to
various other tools and methods.

Business model generation demands a broad range
of skills, knowledge and experience as well as cre-
ativity. Thus, business model generation is often con-
ducted in teamwork. There is a widespread belief
that the performance of interactive groups is higher
than the performance of nominal groups (i.e. the
aggregate performance of the same number of non-
interacting individuals). However, this does not nec-
essarily hold true. For instance, various studies on
group performance in brainstorming have shown that
nominal groups outperform interactive groups, e.g.
(Diehl and Stroebe, 1987; Mullen et al., 1991). While
teams tend to generate more ideas if they follow Os-

32

born’s brainstorming rules (Osborn, 1957) than when
they do not stick to those rules, they are still not as ef-
fective as nominal groups. Explanations for this phe-
nomenon include social loafing (Paulus et al., 1993),
social anxiety (Camacho and Paulus, 1995) and pro-
duction block (Diehl and Stroebe, 1987).

While the BMC deserves merit for providing a
common language for group discussion, teams have
to be careful. Pitfalls in group brainstorming are only
one example illustrating the intricacy of group dy-
namics in collaborative settings.

Teamwork can yield group process gains as well.
For instance, team members might become more mo-
tivated when facing social competition. They might
also improve their skills due to knowledge transfer.
And even coordination gains are possible (e.g. con-
ductor of an orchestra).

Generally, process gains as well as losses can oc-
cur in terms of motivation, capabilities and coordina-
tion. A skilled and experienced facilitator promotes
process gains and mitigates process losses. For in-
stance, they play devil’s advocate to encourage al-
ternative or counter-intuitive thoughts and, conse-
quently, avoid groupthink and shared information bias
(Baker, 2010). However, teams often do not involve a
skilled facilitator because it is considered too expen-
sive, they think there is no need for a facilitator (since
negative effects are implicit and thus hard to notice)
or there is simply no facilitator available.

In many situations, collaborative web-based CAD
software is expected to be used without a dedicated
facilitator, mostly to save time and money. There-
fore, we argue that collaborative BMC software has
to compensate for the lack of a skilled facilitator as
much as possible. We expect CAD software for busi-
ness design to enforce meta-model constraints and
validate the model (e.g. impose mappings between
value propositions and customer segments). This
way, the BMC modeling tool can provide, for in-
stance, helpful directions in the case of meta-model
violations. Hauksson et al. (2014) implemented
a desktop-based wizard for business model design
which enforces BMC meta-model constraints.

While it is unlikely that software can fully replace
a human facilitator, there are some simple yet power-
ful techniques to improve collaboration and ideation
in groups. For instance, gamification techniques can
help mitigate motivation losses. Allowing anonymous
contributions might reduce social anxiety or evalu-
ation apprehension and, as a result, increase diver-
sity of ideas since ideas can be expressed uninhib-
itedly. Separation between divergent thinking (de-
ferring judgment, creating as many ideas as possi-
ble) and convergent thinking (think and evaluate ideas

Improving Computer-Support for Collaborative Business Model Design and Exploration

analytically), shown to improve creativity processes
and results (Cropley, 2006), can be supported by im-
plementing different views and means of interaction
for each of those phases. In addition, differentiat-
ing between single and team phases might increase
the quantity of ideas: during single phases contribu-
tions from other team members should be hidden to
avoid production block and mutual influence, during
team phases contributions from others should be visi-
ble such that they can serve as an inspiration for addi-
tional ideas and refinements. While we do not pro-
vide an exhaustive list of design recommendations,
we argue for the integration of insights from social
psychology and creativity research into the design of
future CAD tools for business modeling.

2.4 Discussion

In general, the BMC captures one specific business
model. While it is possible to sketch more business
models on the same canvas at the same time, the can-
vas tends to get confusing. Therefore, in practice,
each business model is usually sketched out on a sep-
arate canvas.

The BMC facilitates a structured discussion about
a business model but it does not guide its users
to explore the formal solution space systematically.
Rather, users tend to start with specifying one build-
ing block and then scrape from building block to
building block. However, this heuristic approach
might miss innovative and viable solutions. One
method to circumvent this disadvantage and to ex-
plore the full solution space is Morphological Anal-
ysis which is presented in the next section.

Another issue that arises in collaborative settings
which is not addressed by the BMC is group dynam-
ics. Social psychology literature has shown how vari-
ous negative effects such as social loafing tend to oc-
cur in group settings. As a result, team performance
and productivity might degrade considerably.

3 USEFUL CONCEPTS FROM
MORPHOLOGICAL ANALYSIS
FOR BMC SOFTWARE DESIGN

In this section, we introduce General Morphological
Analysis (GMA), a generic problem modeling tech-
nique, and associated software tools. We argue that
they feature useful concepts which should be con-
sidered to be adopted by CAD software for business
modeling. In a broader sense, Morphological Analy-
sis (MA) is concerned with the study of form, struc-

Parameter | Parameter | Parameter | Parameter
A B C D
al bl cl dl
a2 b2 c2 d2
a3 b3 d3

Figure 3: The general structure of a morphological field.
One specific formal configuration is highlighted in gray.

ture and interconnections between structural elements
(Shurig, 1986). Various disciplines such as linguistics
or biology conduct subject-specific variants of MA.
Swiss Astronomer Fritz Zwicky developed a generic
type of MA commonly referred to as General Mor-
phological Analysis (GMA) (Ritchey, 1998). GMA is
a method which aims to facilitate system or problem
understanding and structuring. GMA is particularly
suited for multi-dimensional, non-quantifiable prob-
lems for which mathematical or causal modeling is
not applicable or appropriate (Ritchey, 1998). The
general idea of GMA is to derive a non-quantified
model of the system or problem under examination
by identifying its key structural components. In the
following, we will focus on GMA for problem struc-
turing and solving.

3.1 Method

The initial step of GMA is to clarify the problem
statement such that there is a shared understanding
of the problem. The result of this step is a set of as-
pects, or parameters, that seem to be the most relevant
characteristics of the problem at hand.

GMA distinguishes between parameters (also:
components or dimensions) and parameter values.
The first step of GMA is to break down the prob-
lem into subcomponents. Ideally, the subcomponents
are mutually exclusive and collectively exhaustive. In
practice, there might be some overlap between pa-
rameters. However, the overlap should be as small
as possible. Team members have to discuss and col-
laboratively devise a set of parameters which captures
all key aspects of the problem at hand. This step fos-
ters a shared understanding of the problem because
the group needs to reach a consensus about what the
key aspects of the issue are. For business model de-
sign, the BMC provides an established problem struc-
ture (i.e. the nine building blocks).

Once an adequate set of parameters is found, the
range of parameter values has to be specified for each
parameter. Parameter values can be qualitative or
quantitative. The level of abstraction is specific to the
concrete problem and purpose of the analysis. What
is important in this step of GMA is to investigate each
parameter independently. This approach promotes di-

33

Fourth International Symposium on Business Modeling and Software Design

Parmenides EIDOS 8.3 - University License

zation layout Help

= Gesamtszenarien == OD PC Marketing Strategy

|Strategic Option Space eBike Mobility Services
Value Customer Customer Channels Revenue Key Partners Key Activities Key Resources Cost Structure
Proposition Segments Relationships Streams
First in Pragmatists: Full Mobility Flagship Stores Traditional Public Transport Research & Metwark Ovwent Staff
Technology Short-distance Service Providar Salas Modsl Companies Devslopment Management
Travelers
Low-Carbon, Reckoners: DOne-Stop Existing Bike Value-Added Automotive Branding Promation Patents
Full Mobility Park-and-Ride Information Stores Reseller Niche Player (Red Bull
Household Commuters Shop Model)
Zero-Emission Progressives: Consumer B2B-Platform Vehicle Leasing High-Tech Product Technology Know-How |
Neighbarhood Urban Space Intelligence Li-lon Battery Brokerage Assessment Acquisition
Promaters Iediator Devalopers
Urban Idealists: Top-Performer Information Standard Low-Cost Inforrnation Customer
Avantgarde Future No-Car Partnership Senice Platfarm Commission Bike Frame Brokerage Intimacy
Households Brand Model Manufacturers
Performers: B E Exclusive Lifestyle Sourcing &
Smart Membership Dutfitters Sales
Innovation Model

Figure 4: A screenshot from Parmenides EIDOS showing a morphological field which represents the strategic option space

for an eBike Mobility Service.

vergent thinking and openness for counter-intuitive
values. The focus at this point is on formal properties.
Evaluation of feasibility should be deferred. We argue
that this is a major advantage over the BMC method
because individuals are tempted to think about differ-
ent building blocks at the same time because they in-
stinctively try to interrelate different building blocks
(e.g. ”‘if we want to sell our product to young people
we have to build a mobile platform as a channel”).
While this approach can make sense, innovative ideas
might not be taken into consideration because the dis-
cussion is centering around familiar business model
patterns. Thus, business modelers constrain their cre-
ativity and, consequently, might miss particularly in-
novative business model designs.

Parameters and their value ranges constitute a
morphological field (MF) which is usually repre-
sented by a matrix (see Figure 3). The MF matrix
is a dense representation of the formal configuration
space. The formal configuration space is the set of
all morphological configurations (i.e. parameter value
combinations containing one and only one value per
parameter). Depending on the perspective and pur-
pose of the analysis, the formal configuration space is
sometimes referred to as formal problem space or for-
mal solution space. To sum up, GMA is a structured
problem modeling method which enables its users to
establish the space of all formal solutions, systemati-
cally discuss the contained formal configurations and

34

identify the best solution.

GMA prescribes clear separation between diver-
gent thinking and convergent thinking. By contrast, in
BMC workshops, participants tend to mix both styles
of thinking too frequently and, as a result, do not sys-
tematically explore the space of bounded creativity.

3.2 Example

GMA can be used for various purposes such as sce-
nario analysis, product innovation or strategy devel-
opment. Figure 4 shows an example for a MF rep-
resenting the strategic option space for an eBike Mo-
bility Service in terms of BMC terminology. Each
parameter (i.e. “building block”, gray background)
can take a value from its parameter range (depicted
in yellow or white, respectively). A formal business
model is given by a specific configuration from the
morphological field (i.e. solution space). For in-
stance, a specific formal business model is given by
(“First in Technology”, “Pragmatists: Short-distance
Travelers”, “One-Stop Information Shop”, “Flagship
Stores”, “Vehicle Leasing”, “Public Transport Com-
panies”, “Research & Development”, “Promotion”,
“Patents”). Not all possible configurations represent
viable business models since some business model el-
ements might be incompatible. However, using GMA
the complete set of formal solutions can be identified
and systematically evaluated. GMA software can help

Improving Computer-Support for Collaborative Business Model Design and Exploration

0 u‘in“ | aéa@\g?‘
Efc 0| Ble| o sl wl «[u] £[c| Skm ele| +|-| #s(n]

Figure 5: Consistency matrix in MA/Carma. Adopted from
(Ritchey, 2005).

reduce the formal solution space to a viable solution
space using various techniques such as cross consis-
tency assessment or clustering.

3.3 Sofware Support for GMA

Conducting a GMA by hand has one major challenge:
the size of the solution space grows exponentially
with each additional parameter. As a result, it is of-
ten not possible to evaluate all formal solutions of
the MF (e.g. a 5-parameter MF with 6 possible val-
ues for each parameter yields 67 = 7776 formal so-
lutions. The example in Figure 4 contains 480.000
formal business models.). Therefore, in workshops
without software support, the solution space cannot
be analyzed exhaustively. Rather, only a small subset
of configurations is selected for deeper analysis ac-
cording to subjective preferences and within objective
constraints (e.g. time limit). GMA software addresses
the challenge of large solution spaces by providing
means for reduction of the formal configuration space
to a practical solution space. Examples for software
which supports GMA and solution space reduction
include Parmenides EIDOS (Parmenides Foundation,
2014) and MA/Carma (Ritchey, 2005).

MA/Carma allows the creation of an inference
model. First, the user has to specify the consis-
tency (or compatibility) of each pair of parameter val-
ues. Given such a consistency matrix (see Figure 5),
MA/Carma generates an interactive inference model
(see Figure 6). The user can declare arbitrary param-
eter values to be exogenous (colored red or medium

clof> sl of 5 vl ol afm || mimim| 5o +|-] #lsic] AL {ml[w

fode v
PLANNING/ mmlu@mn_‘ PERSONNEL ‘Eﬁﬁﬁim | commanD LEVEL] RE RESPONSE: RESPONSE:
Affected

PLANS EDUCATION | AVAILABLE AVAILABLE chemical release | Information to
publ

Full municipal " Broad co-op. |11 or more ‘Special equipment Command level 4 " Reduce by atleast| Warn involved Help many within
preparedness plan training for specific case & within § min 30 min

807% within 18 min

No help within 30

Only alertplan

Figure 6: An interactive inference model constructed by
MA/Carma. Adopted from (Ritchey, 2005).

gray, respectively) and the software calculates which
values are still viable for the remaining parameters
(colored blue or dark gray, respectively). A detailed
description can be found in (Ritchey, 2005). Par-
menides EIDOS supports a similar technique: users
have to specify a numeric consistency value for each
pair of parameters. Then, a consistency value for
each configuration is calculated by the software. As
a result, in their subsequent analysis, users can focus
on configurations which yield the highest consistency
values. In contrast to MA/Carma, Parmenides EIDOS
supports clustering of similar configurations to iden-
tify more abstract patterns among viable solutions.

3.4 Discussion

GMA is a simple problem structuring method for in-
dividuals and groups. It can be used for various prob-
lems such as product innovation, strategy develop-
ment or scenario analysis. MA is particularly useful if
the problem at hand cannot be adequately expressed
in a mathematical model, many different stakeholders
are involved and various viewpoints have to be con-
sidered.

MA aims at constructing a formal solution space.
Formal solutions in the solution space might be in-
consistent and/or impractical. Solution space reduc-
tion techniques such as cross consistency assessment
in combination with complementary software support
help rule out inconsistent configurations and reduce
the solution space significantly. This way, the solution
space can be explored exhaustively yet efficiently.

To the best of our knowledge, there is no GMA
software that is inherently collaborative and supports
distributed teams. While GMA software such as Par-
menides EIDOS or MA/Carma is used by facilitators
to provide a shared display in workshops, their user
interface and interaction design is tailored to individ-
ual users.

Moreover, we have not found any GMA software

35

Fourth International Symposium on Business Modeling and Software Design

that accounts for psychological aspects and group dy-
namics. However, we argue that BMC software de-
sign can borrow from GMA and respective software.
They key advantage of the software-based GMA ap-
proach to modeling of complex problems such as
business model innovation is the systematic construc-
tion of the formal solution space and leveraging soft-
ware to find viable solutions within the practical solu-
tion space.

A key feature of MA/Carma is the construction
of an inference model of the solution space. Design-
ers can interact with the model and analyze the de-
pendencies of strategic decisions by treating specific
parameter values as fixed input. Given a consistency
matrix, the software automatically calculates which
options remain to be viable for all other parameters.
We argue that such an inference model provides more
insights into the business modeling space than the de-
piction of the BMC. The BMC is a descriptive model
that only represents one particular business model (or
multiple descriptive models if colors are used.).

4 KEY REQUIREMENTS FOR
FUTURE BMC SOFTWARE

In the previous sections, we identified three key re-
quirements for future CAD software for business
model design: (1) the ability to perform an interactive
“what-if”” analysis (inference capability), (2) method-
ical guidance throughout the design process (facilita-
tion capability) to mitigate negative effects of group
dynamics, and (3) the ability to collaborate across
time, location and organizational boundaries (support
of distributed teams).

The inference capability enables designers to ex-
periment with business models by declaring partic-
ular business model elements as exogenous and an-
alyzing the implications for the remaining building
blocks. The facilitation capability offers guidance
during the design process in order to increase cre-
ativity of the designers while limiting negative effects
stemming from group dynamics. In addition, bor-
rowing techniques from GMA software, future BMC
software might provide a concrete process model for
systematic generation of business models within the
conceptual boundaries of the BMC while still allow-
ing and promoting creativity (i.e. parameter (value)
definition, cross consistency assessment and config-
uration space reduction). The support of distributed
teams refers to the ability to carry out the business
model design process cost-efficiently in a distributed
setting.

Collaborative, web-based CAD software support-

36

ing the BMC is readily available. Thus, there is BMC
support for distributed teams. However, those tools
lack inference and facilitation capabilities.

Therefore, we propose to extend BMC software
by borrowing concepts from GMA and respective
software. Neither BMC methodology nor GMA ad-
dress potential group process losses such as motiva-
tion loss (e.g. social loafing) or skill impairment (e.g.
social anxiety). Thus, groups might not exploit their
full cognitive and creative potential.

We argue that methods as well as tools for col-
laborative business model generation have to address
negative effects of teamwork and try to mitigate them.
Skilled human facilitators might accomplish this task.
However, assessing the skill of a human facilitator is
hard. In addition, in some contexts there is no possi-
bility to hire an experienced facilitator or it might be
considered too expensive.

The absence of a facilitator can be compensated in
BMC software by implementing various facilitation
and creativity techniques. For instance, creativity can
be increased by clearly separating between divergent
and convergent thinking phases. Alternating between
individual and team ideation helps decreasing nega-
tive impact of anchoring and groupthink. Anonymity
can help reduce social anxiety. On the other hand,
anonymity might increase social loafing since contri-
butions cannot be attributed to individuals and, thus,
individuals might ”‘hide’”” behind the team. Facilita-
tion capabilities have to be well-conceived and evalu-
ated.

S CONCLUSION AND FUTURE
WORK

We identified benefits and shortcomings of state-of-
the art CAD software for the BMC methodology.
We agree with Osterwalder, Fritscher et al. that
CAD software for business model design is likely
to improve strategic planning, particularly for dis-
tributed business model design teams which face in-
creasing competition (Osterwalder and Pigneur, 2013;
Fritscher and Pigneur, 2014). The BMC deserves
merit for providing a common (visual) language for
business model design. However, we think that CAD
support for business model design is still only in its in-
fancy and that various questions need to be answered
about how to design effective next-generation CAD
software for collaborative business model design. We
expect future BMC software to leverage the potential
of software support and provide additional value that
goes beyond mere digitization of the BMC approach.

Our next step is to refine the general requirements

Improving Computer-Support for Collaborative Business Model Design and Exploration

identified in this paper. Then, we will build a pro-
totype which implements the ideas discussed above
(e.g. inference and facilitation capabilities) and vali-
date our hypotheses.

REFERENCES

Baddeley, A. (1998). Recent developments in working
memory. Current opinion in neurobiology, 8(2):234—
238.

Baker, D. F. (2010). Enhancing group decision making: An
exercise to reduce shared information bias. Journal of
Management Education, 34(2):249-279.

BiZZdesign (2004). BiZZdesign Architect. http:/
www.bizzdesign.com. [Online; accessed April 15,
2014].

Brown, K. N. and Cagan, J. (1996). Grammatical design
and bounded creativity. Carnegie Mellon University,
Department of Mechanical Engineering.

Business Model Foundry GmbH (2013). Strategyzer.
http://www.strategyzer.com. [Online; accessed April
15,2014].

Buxton, B. (2007). The Anatomy of Sketching. Morgan
Kaufmann, San Francisco and CA and USA.

Camacho, L. M. and Paulus, P. B. (1995). The role of so-
cial anxiousness in group brainstorming. Journal of
Personality and Social Psychology, (68):1071-1080.

Carlile, P. R. (2002). A pragmatic view of knowledge and
boundaries: Boundary objects in new product devel-
opment. Organization Science, 13(4):442-455.

Chesbrough, H. (2010). Business model innovation: Op-
portunities and barriers. Long Range Planning, 43(2-
3):354-363.

Cropley, A. (2006). In praise of convergent thinking. Cre-
ativity Research Journal, 18(3):391-404.

Diehl, M. and Stroebe, W. (1987). Productivity loss in
brainstorming groups: Toward the solution of a rid-
dle. Journal of Personality and Social Psychology,
53(3):497-509.

Eppler, M. J., Hoffmann, F., and Bresciani, S. (2011). New
business models through collaborative idea genera-

tion. [International Journal of Innovation Manage-
ment, 15(6):1323-1341.

Fritscher, B. and Pigneur, Y. (2010). Supporting business
model modelling: A compromise between creativity
and constraints. In Task Models and Diagrams for
User Interface Design, 8th International Workshop,
Revised Selected Papers, pages 2843, Brussels and
Belgium.

Fritscher, B. and Pigneur, Y. (2014). Computer aided busi-
ness model design: Analysis of key features adopted
by users. In 47th Hawaii International Conference on
System Science, pages 3929-3938, Waikoloa and HI
and USA.

Hauksson, H. and Johannesson, P. (2014). Metamodeling
for business model design. facilitating development
and communication of business model canvas (bmc)
models with an omg standards-based metamodel. In

The 8th International Workshop on Value Modeling
and Business Ontology (VMBO 2014), Berlin and
Germany.

Mitchell, D. W. and Coles, C. B. (2003). The ultimate com-
petitive advantage of continuing business model inno-
vation. Journal of Business Strategy, 24(5):15-21.

Mitchell, D. W. and Coles, C. B. (2004). Establishing a con-
tinuing business model innovation process. Journal of
Business Strategy, 25(3):39-49.

Mullen, B., Johnson, C., and Salas, E. (1991). Productivity
loss in brainstorming groups: A meta-analytic integra-
tion. Basic and Applied Social Psychology, (12):3-23.

Osborn, A. F. (1957). Applied imagination: Principles
and Procedures of Creative Problem Solving. Charles
Scribner’s Sons, New York and NY and USA.

Osterwalder, A. (2004). The business model ontology:
A proposition in a design science approach, volume
HEC 173. Institut d’Informatique et Organisation,
Lausanne and Switzerland.

Osterwalder, A. and Pigneur, Y. (2010). Business Model
Generation: a handbook for visionaries, game chang-
ers, and challengers. Jon Wiley & Sons.

Osterwalder, A. and Pigneur, Y. (2013). Designing business
models and similar strategic objects: The contribution
of is. Journal of the Association for Information Sys-
tems, 14(5):237-244.

Parmenides Foundation (2014). Parmenides EIDOS.
https://www.parmenides-foundation.org/application/.
[Online; accessed April 15, 2014].

Paulus, P. B., Dzindolet, M. T., Poletes, G., and Cama-
cho, L. M. (1993). Perception of performance in
group brainstorming: The illusion of group produc-
tivity. Personality and Social Psychology Bulletin,
(19):78-89.

Proud Sourcing GmbH (2011).
http://www.canvanizer.com.
April 15, 2014].

Ritchey, T. (1998). Fritz Zwicky, Morphology and Policy
Analysis. In 16th Euro Conference on Operational
Analysis, Brussels.

Ritchey, T. (2005). MA/Carma: Advanced Com-
puter Support for General Morphological Analysis.
http://www.swemorph.com/macarma.html. [Online;
accessed April 15, 2014].

Shurig, R. (1986). Morphology: A knowledge tool. Systems
Research, 3:9-19.

Steenkamp, J. (2012).
http://www.bmfiddle.com.
April 15, 2014].

Walny, J., Carpendale, S., Henry Riche, N., Venolia, G.,
and Fawcett, P. (2012). Visual thinking in action:
Visualizations as used on whiteboards. IEEE Trans-

actions on Visualizations and Computer Graphics,
18(12):2779-2788.

Canvanizer.

[Online; accessed

Business Model Fiddle.
[Online; accessed

37

Agile Enterprise Architecture Management
An Analysis on the Application of Agile Principles

Matheus Hauder', Sascha Roth', Christopher Schulz? and Florian Matthes'
!Software Engineering for Business Information Systems (SEBIS), Technical University Munich,
Boltzmannstrafle 3, 85748 Garching, Germay
Syracom, Parkring 4, 85748 Garching, Germany
{matheus.hauder, roth, matthes}@tum.de, christopher.schulz@syracom.de

Keywords:

Abstract:

Enterprise Architecture Management, Survey, Agile, Enterprise Architecture Framework.

Enterprise Architecture (EA) management has proven to be an efficient instrument to align business and IT

from a holistic perspective. Many organizations have established a permanent EA management function
responsible for modeling, analyzing, and defining the current and future EA state as well as the roadmap.
Similar as in software development, EA management initiatives face challenges that delay results,
complicate the collaboration, and deteriorate the overall work quality. While in software development, agile
principles and values reflected in tangible methods like Scrum and Extreme Programming are increasingly
adopted by organizations, there is little known whether these practices have already made their way into EA
management. Based on three research questions, this paper sheds light on the status-quo of agile principles
applied to EA management. We present results of an online survey among 105 industry experts working for
more than 10 industry sectors across 22 different countries.

1 INTRODUCTION

Globalization, frequently altering market conditions,
and the pressing need to reduce operating costs force
organizations to carry out complex business
transformations at a regular interval. However,
performed without a holistic and explicit picture of
the organization, these transformations are likely to
fail (Ross et al., 2006). An Enterprise Architecture
(EA) serves as a common means to look at an entire
organization as a whole. It captures both, business
aspects (e.g., business processes, business objects)
and IT aspects (e.g., interfaces, networks, devices)
as well as their interrelations (Buschle et al., 2012).

Being applied by an increasing number of
enterprises, the corresponding discipline EA
management fosters the mutual alignment of
business and IT (Weill and Ross, 2009).

EA management deals with capturing, modeling,
analyzing, and defining the current, planned, and
future architecture in conjunction with the roadmap
leading from the as-is to the target state (The Open
Group, 2011). However, EA management faces
various challenges ranging for instance from the late
return on investment to the delayed valuation of the
disciplines by concerned stakeholders (cf. e.g.

38

(Hauder et al.,, 2013), (Lucke et al., 2010) and
(Lucke et al., 2012).

When looking on the domain of software
development, researchers likewise to practitioners
propose the adherence to so-called agile values
helping to address these types of challenges
(Schwaber, 2004). Key to these values are agile
principles like the avoidance of waste (Gloger,
2010), an early stakeholder involvement (Beck et al.,
2001), and gathering feedback at an ongoing basis
(Highsmith and Cockburn, 2001).

In many cases these principles are based on lean
production practices initially applied by the Japanese
car manufacturer Toyota (Deming, 2000), (Holweg,
2007). As of today, the benefits of agile principles to

software development are still discussed
controversially (Reifer et al., 2003).
Several similarities between software

development - centering rather on single systems -
and EA management - focusing on the holistic
management of systems of systems - can be drawn.
Both disciplines have to handle frequently changing
requirements while ensuring a close collaboration
among the multi-disciplinary stakeholders. Focusing
on the latter, researchers have already proposed to
apply agile practices known from the development

Agile Enterprise Architecture Management - An Analysis on the Application of Agile Principles

of software (Ambler, 2010a), (Buckl et al., 2011).

Given that in many cases EA management is
initially promoted through IT (Hauder, Roth,
Matthes and Schulz, 2013), EA initiatives are well
aware of agile practices, e.g. Scrum, Extreme
Programming (XP), Feature Driven Development
(FDD), and might apply their according principles in
their day-to-day business. From an empirical
standpoint, we witness that EA management
endeavors of our industry partners increasingly
apply these agile practices. In addition, we diagnose
agile prescriptions are implicitly incorporated in
today’s EA management frameworks, e.g., (The
Open Group, 2011).

Yet, literature documenting the agile nature of
EA management is scarce; in particular empirical
ground is missing. Against this background, we
conclude to the following research objective:

‘Which agile principles known from the software
engineering domain should be applied for the
design of an organization-specific agile EA
management practice?’

The research approach and the deliverables are
illustrated in Figure 1: After defining the scope and
the research questions, we conducted a literature
review to identify agile principles from other
domains. Based on these principles we designed an
online survey to evaluate their usage in EA
management. In order to answer the research
questions and gain a deeper understanding on the
application of the principles, we correlated them
with the specific EA management challenges of the
organizations (Hauder et al., 2013).

The following section (Section 2) provides the
findings we made when perusing EA management
literature looking for agile pointers. In Section 3 we
explain how agile principles and values from the
software development world could be adopted by
EA management. In addition to the introduction of
our research hypotheses, Section 4 outlines the main
setup of an online survey we conducted among 105
experts in the field. We analyze and discuss the data
in Section 5 and 6 before concluding the paper with
remarks on future research.

2 AGILE PRINCIPLES IN
ENTERPRISE ARCHITECTURE

To identify tangible material on agile principles and
values in EA management, we applied a structured
approach as recommended by Webster and Watson
(Webster and Watson, 2002). During April 2013 we

perused different IS journals, conference
proceedings, and books using the Web of Science,
Google Scholar, IEEExplore, Citeseer, SpringerLink
and the library of our research institution. Thereby,
we carried out electronic full-text searches on the
following English keywords: ’enterprise architecture
management’ and ’agile’ as well as their German
translations. After a first analysis of the overall 53
sources (title, abstract, outline) adhering to the
method of hermenecutic text comprehension, the
following sources have been identified as relevant
given their focus on the topic.

1. SCOPE OF RESEARCH

Enterprise Architecture "
| Deliverable: Research questions.

. on the design of an agile EA
Aglle practice
Scrum

2. LITERATURE REVIEW

Deliverable: List of agile principles |
applied in various other domains

3. SURVEY DESIGN

2) | Deliverable: Online survey on the
application of agile principles in EA

4. SURVEY

Deliverable: Results onthe usage | 4 & D
of agile principles for EA R
management in practice

5. ANALYSIS

. | Deliverable: Analysis of the most
common agile principles with
organizational context

1) Finding 1
-/ 9

1) Finding 2
(1) Finding

]
(1) Finding 3

Figure 1: Research approach and deliverables.

Ambler accentuates that EA management has to
be business driven, evolutionary, collaborative, and
focused on producing valuable artifacts (Ambler,
2010a). Based on an examination of problems EA
management is typically coping with, the
practitioner points out six pieces of advice to make
the management of enterprise architectures more
agile, among others, simplicity, focus on people, and
an iterative and incremental approach (Ambler,
2009). In the latest of his reports, Ambler goes even
further, proposing an agile architecture process
complemented by several key techniques (Ambler,
2010b). The findings published by Ambler all root in
practical work experience with no evaluation on a
quantitative scale.

Bob Rhubart describes how an EA management
could be turned more agile (Rhubart, 2010). The
Oracle representative highlights the necessary buy-in
from architects, developers, and other stakeholders

39

Fourth International Symposium on Business Modeling and Software Design

at all levels of the organization. Next to the
importance of conversation in particular with the
developing teams, the manager considers the
involvement of enterprise architects at the project
level as very crucial. Again, all suggestions are
based on in-the-field work based on a single
company (employee) perspective.

Friedrichsen and Schrewe see typical EA
management problems (e.g. losing sight of
fundamentals, becoming a slave of the EA
management framework) as a reason to introduce
agile values (Friedrichsen and Schrewe, 2010). The
consultants advise to launch an EA management
initiative with clear goals and a limited scope while
always keeping potential risks in mind. In their eyes,
frameworks and tools have to be considered as
toolboxes that ensure to reach the stated goals more
efficiently.

While Eric Landes recommends applying
concrete techniques like retrospectives and lessons
learned action items, iterative cycles, as well as
automated acceptance criteria in the emergent design
of an architecture (Landes, 2012), Scott Nelson
assumes two distinct viewpoints when discussing the
similarities and differences of managing enterprises
architectures vs. developing software in an agile
manner (Nelson, 2012).

As another industry expert and active blogger,
Gabhart advises to avoid big bang EA management
projects attempting to “boil the ocean”, thus are too
big in scope (Gabhart, 2013). Instead of that, the
author proposes to start off small, building up an EA
management capability in an incremental and
iterative 4-step process. Lastly, the staff member
Gattadahalli of the former IT Company EDS shares
the knowledge of an agile management of EAs in
terms of seven critical success factors (Gattadahalli,
2004).

After having introduced EA management to the
reader of their book, Bente, Bombach, and Langade
proposes six so-called building blocks helping to
render the discipline more agile and lean (Bente et
al., 2012). Benefiting from examined sources paired
with their professional experience, Bente et al.,
describe how to streamline the architecture
processes, setup an agile EA project, and foster
collaboration and participation. Even though their
explanations are backed by several fictitious
examples, no quantitative results are provided that
would prove the adoption of agile practices in EA
management.

To respond to the problems often encountered in
EA management, Shirazi et al. propose a framework
rendering the discipline more agile (Shirazi and

40

Rouhani, 2009). Named Agile Enterprise
Architecture Framework (AEAF), the artifact
consists of seven models and eleven interactions
both based on agile principles and values. Even if
the authors do not indicate any relations, the five
viewpoints and six project aspects also included in
AEAF resemble the Zachman framework (Zachman,
1987).

Although AEAF touches on several agile aspects
like regular feedback or focus on cooperation, the
research group’s paper neither proves the empirical
relevance of an agile EA management nor it validate
the framework work in practice.

Rooted in lean principles, information
technology architectures, and systems engineering
methods, Comm and Mathaisel propose the Lean
Enterprise Architecture (LEA), a three-phase
structure to organize the activities for the
transformation of the enterprise to agility (Comm
and Mathaisel, 2010). The researchers combine their
framework with concepts from the Lean Enterprise
Transformation Engineering while also
incorporating lean principles and practices in the
resulting process. However, their work does not
detail on these principles or explains how an agile
enterprise should evolve its EA.

As one of the most popular approaches, The
Open Group Architecture Framework (TOGAF) 9.1
does not explicitly recommend to manage an EA in
an agile style (The Open Group, 2011). In turn, a
more agile organization is considered as a surplus
brought along by a “good” enterprise architecture.
Notwithstanding, with concepts like iterations to
develop a comprehensive architecture landscape and
architecture, to manage changes to the
organization’s architecture capability, as well as
appropriate stakeholder management the EA
framework TOGAF promotes important agile
principles.

The striving for agile principles and values
enhancing the efficiency of EA management is
mainly found in practitioners’ circles. While only a
small number of experts emphasize the misfit of
both disciplines, e.g. (Nicholette, 2007), the majority
of industry authors consider agile means as being
well suited for EA management (Banerjee, 2011).
As of January 2014, few academic publications and
frameworks embrace or even mention to apply an
agile management means for EAs. Studied sources
are very new, indicating that the mind-set of an agile
EA management is still nascent. No contribution
was found that investigated on the current status quo
of agile practices in industry.

Agile Enterprise Architecture Management - An Analysis on the Application of Agile Principles

Business Metrics LN
and IT
Top management t 1 strategy ‘ Top management
yd N
-_—
Business owners t Bu;iness callect Visualizations Business
and org. "
o motvate = stakeholders

Application adapt support
owners < 7 Software
reflect development
Individual get feedback
architecture
aspects
IT operations t IT operations

Architecture-

approval and

requirements
-

Architecture
blueprints

Architecture
changes

T -

Agile Enterprise Architecture Management Practice

Project managers

20119814 JUBWaGRURA 2IN1PMYLY asidiul 318y

Software developers

Software architects

()

Synthesize/Evaluate

Synthesize/Evaluate

EA Frameworks

Agile Principles

[Goals Concerns Information Models

Frameworks and Principles

Methods Viewpoints

s3]ddULg PUB SYIOMBWEI4

Figure 2: Design of an organization-specific agile EA management practice based on theoretical concepts often found in
current EA frameworks which are extended by agile principles, cf. (Roth et al., 2014).

3 APPLYING AGILE SOFTWARE
DEVELOPMENT PRINCIPLES
TO ENTERPRISE
ARCHITECTURE

The application of agile software development
principles to EA is illustrated in Figure 2. The lower
part of the figure shows the framework and agile
principles that are synthesized and constantly
evaluated to design an organization-specific EA
management function. In the following, we illustrate
the application of these principles for EA
management.

When focusing on the working style applied for
managing EAs, the Agile Manifesto recommends an
early and constant delivery of results while
maintaining a responsive attitude with regards to
changing requirements (Beck et al., 2001), (Cohn,
2005). Translated into an EA management context,
enterprise architects should strive to ship their
deliverables as early as possible, pursue an
incremental and iterative approach, and embrace

changes regarding their working style and results.
Similar to their software develloping counterparts, an
EA management team should always take care of the
most important tasks first with a valuation of time
over completeness and quality (Stal, 2012).

As goes the Agile Manifesto (Beck et al., 2001),
an EA management team should advance in a
constant pace trying to avoid overtime while having
enough leeway for reflections and retrospectives.
Speaking of flexibility, agile literature recommends
a modus operandi where members are allowed to
experiment and try out new things (Coldewey,
2012). In conforming to the pull-principle (Gloger,
2010) as well as the one-piece flow (Fisher, 2000),
the EA management team should create deliverables
only upon stakeholders’ demand within an
environment with little or no distraction and
interference during the work (Schwaber, 2004). On
the other side of the spectrum, stakeholders should
be eager to give regular feedback (Ross, Weill and
Robertson, 2006) on the results delivered through
the EA management team. However, the latter
should be incorporated into the work of the team.

41

Fourth International Symposium on Business Modeling and Software Design

In the sense of working software and simplicity
(Beck et al., 2001), (Highsmith and Cockburn,
2001), EA management results should be as usable,
simple, and accessible as possible for EA
management stakeholders. Benefiting from each
individual deliverable the EA management team
releases, stakeholders should be satisfied with the
outcome and value the EA management team
creates. As called for in agile literature (Highsmith,
2002), (Gloger, 2010), EA management results
should be of the highest quality, crafted in a way that
they only respond to the stakeholders’ demand with
a level of done that is understood and agreed upon.

Centering on the actors performing the work,
agile sources emphasize a cross-organizational team
whose members are specialized to perform various
tasks (Gloger, 2010) in a self-organized manner
(Beck et al., 2001). From an educational perspective
(Coldewey, 2012), the EA management team
members should have special skills and training in
multiple organizational areas (e.g., infrastructure,
processes, application) while being capable to
manage the sequence order their tasks are eventually
completed.

Both, high education and expertise permit the
team to speak the same language as stakeholders and
information providers on a daily basis. In line with
the fifth agile principles (Beck et al., 2001), the EA
management team leader has to create a positive
work environment while catering to the team’s self-
organization. Besides an intrinsic motivation (Beck
et al., 2001), and work satisfaction, each EA
management team member should have a notion of
his/her colleagues’ duties and results. Looking on
the overall organizational structure (Fisher, 2000),
EAM tasks should be accomplished through small
sub-teams in which roles and responsibilities are
clearly defined and understood. Finally, the team
requires strong diplomacy and negotiation skills
employed when interacting with stakeholders and
EA information providers.

4 RESEARCH QUESTIONS,
SURVEY DESIGN, AND
EMPRICAL BASIS

In above outlined literature the application of agile
principles for EA management has been widely
suggested by authors in the community. However, to
date neither a comprehensive list of practical applied
agile principles in EA management is published nor
an empirical validation thereof exists.

42

Since in many cases EA management is initially
promoted through IT (Hauder et al., 2013) which
adopts agile principles more or less eagerly, we
formulate the first research question as follows:

Research Question 1: What are frequently applied
agile principles for EA management in practice?

Our second research question aims at validating
observations, e.g. on the shift towards an
incremental and iterative work fashion for certain
EA management challenges. Not only this enhances
the scoping during the launch of EA initiatives,
incremental and iterative developed products might
provide stakeholders with early results and, thus,
lead to an increased buy-in.

Research Question 2: Which agile principles are
used in enterprises for certain EA management
challenges?

Typically EA management puts focus on a long term
plan how organization should evolve, while agile
practices promote the constant change of ongoing
projects. Since both approaches appear contradictory
at the first look, we formulate the third research
question as follows:

Research Question 3: What are challenges for the
design of an organization-specific agile EA
management practice?

To evaluate these three questions on an empirical
basis, we compiled an online questionnaire using 3-
point Likert scale questions. The contained questions
were based on the collection of agile principles we
explained above. To optimize the questionnaire’s
design, we conducted a pre-test with three
independent non-related researchers who were
requested to complete our survey.

IT Consulting 25

Other 20 21% 26%

Health 2 2%

Transportation 3
3%

Management
consulting 4 4%

Education 5 5%
Finance 18 19%

Telecommunicati
ons 6 6%

Manufacturing 6 Public Service 8
6% 8%

Figure 3: Industry sector of organizations (n and %).

Agile Enterprise Architecture Management - An Analysis on the Application of Agile Principles

The final version of the questionnaire was
available for 21 days. To receive relevant
information we targeted participants working in EA
management or related fields. Using e-mail, we sent
over 1100 survey invitations to industry experts we
collaborated with during the last 8 years.

Software Other 88%
Engineer 1 1%
IT Operations 3
3%

Cx0 6 6%

o

Business
Architect 6 6%

Consultant 12
11%

Enterprise
Architect 54 51%

IT Architect 15
14%

Figure 4: Job titles of participants (n and %).

In addition, the survey has been published in the
two online forums Xing and LinkedIn, announcing
them as topics related to EA or strategic IT
management. We received input from 178 survey
participants, filtered duplicate answers, and ended
up with 105 completed answers for the evaluation,
i.e. a dropout quote of ~41%.

As the survey was conducted primarily in
Germany, 61 (~58%) participants are employed in
Europe. 18 (~17%) work in the USA and 26 (~25%)
are employed in other countries having less than 10
responding participants. Figure 3 illustrates the
distribution of the industry sectors of the
participating organizations. IT consulting is the
largest sector, whereas all consultancies were
requested to answer on behalf of one particular EA
management engagement. IT consulting is followed
by the Finance and Public sectors.

Figure 4 depicts the participants of the online
survey divided by job title. The largest groups
consist of Enterprise Architects followed by IT
Architects and Consultants. Among the participants
are also Business Architects and members of the
management board. In average, questioned
organizations have an experience of 5 years in EA
management.

5 AGILE PRINCIPLES FOR
ENTERPRISE ARCHITECTURE
MANAGEMENT IN PRACTICE

In the following three subsections the research
questions are evaluated based on our empirical data
set. The second research question is evaluated by
applying the Pearson’s chi-square test to validate the
dimensions in our data set.

5.1 Application of Agile Principles

The first research question deals with the application
of agile principles for EA management in practice.
Figure 5 illustrates the practical adoption of agile
principles in EA management ordered by frequency.
As depicted, organizations adhere to agile principles
with a different degree of intensity, confirming our
assumption that the applicability of agile principles
varies for EA management. For instance, while most
organizations perform retrospectives within their EA
management team, only few value time over quality.
Most EA management initiatives apply an iterative
(~79%) and incremental (~87%) approach. About
93% of the organizations apply EA management in a
self-organized manner. Moreover, ~75% say that
they act cross-functionally.

While the overwhelming majority of
organizations apply several agile principles for the
introduction and operation of their EA management
initiatives in practice, some principles are less
frequently traceable. In particular some of these less
frequent agile principles are related with the quality
and completeness of the developed EA products.

Only ~42% of the participating organizations
apply time over completeness and only ~25% rate
time over quality for the developed EA products.
Next to agile principles related to quality and
completeness of the developed EA products, actual
stakeholder demands and utilization of the produced
EA products by these stakeholders are only applied
by the minority of the organizations in our dataset.
With ~38% only a small number organizations are
truly concerned whether these EA products are
actually used by stakeholders.

43

Fourth International Symposium on Business Modeling and Software Design

Operates cross-functional

Incrermental

Iterative

Performs tasks in self-organized manner
Specialized to perform various tasks
Incorporation of reflections & retrospectives
EAM team incorporates feedback

Leader acts as servant for the team

Leader fosters team's self-organization

As simple and accessible as possible

Usable for stakeholders

commaon language

Foster learning by experiments

Early delivery

Members know their colleagues' duties
Diplomacy and negotiation skills
Accomplishes EAM tasks im small subteams
Characterized by defined roles & responsibilities
Focus on high-guality

Satisfy stakeholders

stakeholders provide feedback to EAM team
Focus on requirements

Clear definition of roles & responsibilities
Satisfied with its work

Valuation of time over completness
Embracement of changes

Actually used by stakeholders

agreed level of done

Advancement with a indefinite & constant pace
application of the pull-principle

Adherence to the one-piece flow

Exactly respond to the stakeholders' demands
valuation of time over quality

20

a0 &0 B0 100 120

W Agree W Meither W Disagree B NO response

Figure 5: Applied agile principles for EA management in practice (n=105).

5.2 Agile Principles and Enterprise
Architecture Challenges

We answer the second research question by
correlating EA management challenges from our
empirical basis (cf. Hauder et al., 2013) with the
agile principles illustrated in Figure 5. Due to space
limitations, we only illustrate the statistical
correlations for three major EA management

44

challenges with agile principles using Pearson’s chi-
square test.

The challenge late valuation of EA management
through stakeholders appears in ~51% of the
participating organizations. According to our
statistical test these organizations apply the principle
adherence to one-piece flow with p =.047 (p < .05).
In addition, the principle focus on requirements
resulted in a goodness of fit test of p = .00004 (p <
.05). Further agile principles that correlate with this

Agile Enterprise Architecture Management - An Analysis on the Application of Agile Principles

challenge are advancement with an indefinite &
constant pace p = .002 (p < .05), stakeholders
provide feedback to EA management team p = .0002
(p < .05), agreed level of done p = .009 (p < .05),
useable for stakeholders p = .042 (p < .05), and as
simple and accessible as possible p = .005 (p <.05).
All other agile principles were not statistically
dependent on this challenge for the given relevance.

Around ~38% of the organizations are struggling
with outdated EA results. This means that
architecture descriptions are often outdated before
they are complete and often understood as a project
rather than a continuous process. The agile
principles characterized by defined roles &
responsibilities correlates with p = .004 (p < .05),
members knows their colleagues’ duties with p =
.0001 (p < .05), focus on high quality p = .005 (p <
.05), satisfied with its work p = .001 (p < .05),
adherence to one-piece flow p = .00001 (p < .05),
incorporation of reflections & retrospectives p =
.001 (p < .05), agreed level of done p = .0001 (p <
.05), and usable for stakeholders p =.001 (p <.05).

Reluctant information providers are a challenge
for ~65% of the organizations. This is a very critical
problem since enterprise architects heavily rely on
the information and knowledge provided by
stakeholders. The agile principle satisfied with its
work correlates with p = .043 (p < .05), focus on
requirements p = .00001 (p <.05), application of the
pull principle p = .009 (p < .05), embracement of
changes p = .030 (p < .05), valuation of time over
quality p = .004 (p < .05), as simple and accessible
as possible p =.00001 (p <.05), and exactly respond
to stakeholders’ demand p = .003 (p < .05) correlate
with this challenge.

5.3 Designing an Agile Enterprise
Architecture Management Practice

Designing an agile EA management practice is a
challenging issue. While EA management
frameworks typically work towards a long range
vision of the organization or a business case, agile
practices incorporate findings from ongoing projects
immediately in the process. To put it in another way,
both approaches appear contradictory due to their
top-down and planning (EA management)
respectively bottom-up and emergent course of
action.

Regarding the challenges EA management
initiatives in organizations are faced with neither of
these approaches can solve all challenges on his
own. Integrating both approaches within one agile
EA management practice that is tailored to the

specific demand of the organizational context would
be desirable. The findings presented in this paper
provide an initial empirical basis for further research
on an agile EA management practice. This
compromises the development of agile EA
management roles, activities, and deliverables.

6 CONCLUSIONS

In this paper we provided an empirical foundation
for agile principles applied to EA management by
today’s organizations. Due to the survey design, the
asked industry experts could only confirm or reject
the application of an agile principle for EA
management. Details about their actual
implementation are yet to be revealed. As of today,
this might be challenging, given the scarce literature
on agile EA management and only the implicit
adoption through EA frameworks. Regarding our
survey results, a potential bias might originate from
the lack of a common understanding on how to
operationalize agile principles in EA management.

Further research could examine the impact of
agile principles on the success and benefits of EA
management initiatives. Thereby, the efforts should
account for different organizational factors like the
size of the business, structure, EA management
experience, industry, and tool support. Further
studies could also focus on the correlation (and later
causalities) between challenges encountered in EA
management and possible mitigation through agile
principles.

REFERENCES

Ambler, S. W. (2009): Agile Enterprise Architecture.
http://www.agiledata.org/essays/enterpriseArchitecture
.html. Last opened: 27/08/2013.

Ambler, S. W. (2010a): Agile and Enterprise Architecture.
https://www.ibm.com/developerworks/mydeveloperw
orks/blogs/ambler/entry/agile and_ enterprise architec
ture?lang=en. Last opened: 27/08/2013.

Ambler, S. W. (2010b): Agile Architecture: Strategies for
Scaling Agile Development. http://www.agile
modeling.com/essays/agileArchitecture.htm. Last
opened: 27/08/2013.

Banerjee, U. (2011): Agile development and Enterprise
Architecture practice - Can they coexist. Technology
Trend Analysis. http://setandbma.wordpress.com/
2011/04/11/agile-development-and-enterprise-
architecture-practice-can-they-coexist. Last opened:
27/08/2013.

Beck, K., Beedle, M., Bennekum, A. van, Cockburn, A.,

45

Fourth International Symposium on Business Modeling and Software Design

Cunningham, W., Fowler, M., Grenning, J., et al.
(2001): Manifesto for Agile Software Development.
Agile Alliance. http://agilemanifesto.org. Last opened:
27/08/2013.

Bente, S., Bombach, U., & Langade, S. (2012):
Collaborative Enterprise Architecture: Enriching EA
with Lean, Agile, and Enterprise 2.0 Practices. I ed.
Morgan Kaufmann, Burlington.

Buckl, S., Matthes, F., Monahov, 1., Roth, S., Schulz, C.,
& Schweda, C. M. (2011): Towards an Agile Design
of the Enterprise Architecture Management Function.
6" International Workshop on Trends in Enterprise
Architecture Research (TEAR). Helsinki.

Buschle, M., Grunow, S., Matthes, F., Ekstedt, M.,
Hauder, M., & Roth, S. (2012): Automating enterprise
architecture documentation using an enterprise service
bus. In Proceedings of the 18" Americas Conference
on Information Systems. Washington.

Cohn M. (2005): Agile Estimating and Planning, Prentice
Hall PTR, Upper Saddle River.

Coldewey, J. 2012: Was heifit hier eigentlich “Agil”?
Kennzeichen agiler Organisationen. In
ObjektSpektrum 05/2012.

Comm, C. L., & Mathaisel, D. F. X. (2010): A Lean
Enterprise Architecture for Business Process Re-
engineering and Re-marketing. 12" International
Conference on Enterprise Information Systems (pp.
497-500). Madeira.

Deming, W. E. (2000): Out of the Crisis. MIT press,
Cambridge.

Fisher, K. (2000): Leading Self-Directing Work Teams.
McGraw-Hill, New York.

Friedrichsen, U., & Schrewe, 1. (2010): Leichtgewichtige
Unternehmensarchitekturen — Wie Agilitdt bei der
Einfiihrung eines EA Management helfen kann. In
OBJEKTspektrum, EAM/2010.

Gabhart, K. (2013): Generating Value through
Information Architecture. http://archvalue.com/agile-
enterprise-architecture (last opened: 27/08/2013)

Gattadahalli, S. (2004): Agile Enterprise Architecture
(AEA) - 7 Steps to Success. London.

Gloger, B. (2010): Scrum. In Informatik-Spektrum, 33(2):
195-200.

Hauder, M., Roth, S., Matthes, F., & Schulz, C. (2013):
Organizational factors influencing enterprise
architecture management challenges. 21% European
Conference on Information Systems (ECIS). Utrecht.

Highsmith J. (2002): Agile Sofiware Development
Ecosystems. Pearson Education, Indianapolis.

Highsmith, J., & Cockburn, A. (2001): Agile software
development: the business of innovation. In Computer,
34(9): 120-127.

Holweg, Matthias (2007): The genealogy of lean
production. In Journal of Operations Management 25
(2): 420-437.

Landes, E. (2012): Agile Software Development Concepts
for Enterprise Architects. http://www.devx.com/
architect/Article/47842. Last opened: 27/08/2013.

Lucke, C., Krell, S., & Lechner, U. (2010): Critical Issues
in Enterprise Architecting - A Literature Review. In

46

AMCIS 2010 Proceedings (pp. 1-11). Association for
Information Systems.

Lucke, C., Biirger, M., Diefenbach, T., Freter, J., &
Lechner, U. (2012): Categories of Enterprise
Architecting Issues - An Empirical Investigation based
on Expert Interviews. In D. C. Mattfeld & S. Robra-
Bissantz (Eds.), Multikonferenz Wirtschafisinformatik
(pp. 999-1010). GITO mbH Verlag, Berlin.

Nelson, S. (2012): Making Enterprise Architecture Work
in Agile Environments. http://www.devx.com/
architect/Article/47871. Last opened: 27/08/2013.

Nicholette, D. (2007): Enterprise Architecture and Agile.
Musings of a Software Development Manager.
http://edgibbs.com/2007/10/04/enterprise-architecture-
and-agile. Last opened: 27/08/2013.

Reifer, D. J., Maurer, F., & Erdogmus, H. (2003): Scaling
agile methods. Software, IEEE, 20(4): 12-14.

Roth, S., Zec, M. & Matthes, F. (2014): Enterprise
Architecture Visualization — Tool — Survey 2014.
Technical Report, Technische Universitdt Miinchen.

Ross, J. W., Weill, P., & Robertson, D. (2006): Enterprise
architecture as strategy: Creating a foundation for
business execution. Harvard Business Press, Boston.

Webster, J., & Watson, R. T. (2002): Analyzing the Past to
Prepare for the Future: Writing a Literature Review.
MIS Quarterly, 26(2): 13-23.

Weill, P., & Ross, J. W. (2009): IT Savvy: What top
executives must know to go from pain to gain. Harvard
Business Press, Boston.

Rhubart, B. (2010): Agile Enterprise Architecture. Oracle
Magazine. http://www.oracle.com/technetwork/issue-
archive/2010/10-nov/o60architect-175580.html. Last
opened: 27/08/2013.

Schwaber, K. (2004): Agile Project Management with
Scrum. I ed., Microsoft Press, Redmond,
Washington.

Shirazi, H. M., Rouhani, B. D., & Shirazi, M. M. (2009):
A Framework for Agile Enterprise Architecture. In
International Journal of Intelligent Information
Technology Application, 2(4): 182—186.

Stal, M. (2012): Softwarearchitektur und Agilitdit - Freund
oder Feind?. OOP 2012. Miinchen.

The Open Group (2011): TOGAF® Version 9.1, Van
Haren Publishing, Zaltbommel.

Zachman, J. A. (1987): A framework for information
systems architecture. In IBM systems journal, 26(3):
276-292.

Context-Sensitive Impact Analysis for Enterprise Architecture

Keywords:

Abstract:

Management

Melanie Langermeier, Christian Saad and Bernhard Bauer

Software Methodologies for Distributed Systems, University of Augsburg, Germany
{langermeier, saad, bauer}@ds-lab.org

Enterprise Architecture Analysis, Impact Analysis, Change Propagation, Data Flow Analysis.

Since Enterprise Architecture (EA) models are typically very large, it is often difficult for humans to fully
grasp their contents. Due to this inherent complexity, the task of generating additional value from these
models is very challenging without a suitable analysis method. Impact analysis, which is able to determine
the effects which changes have on other architectural elements, can therefore provide valuable information for
an enterprise architect. Whether an element is affected by a change depends on its context, i.e. its (transitive)
connections to other elements and their status with respect to the analysis. In this paper we propose a context-
sensitive approach to the implementation of impact analyses. This method relies on the technique of data-flow
analysis to propagate the effects of changes throughout the model. As a consequence, the specification can be
defined in a very generic fashion, which only relies on relationship classes. Therefore it can be easily adapted
to organization-specific EA meta models as only the relationship types have to be mapped to the respective

classes.

1 INTRODUCTION

Enterprise Architecture Management (EAM) pro-
vides methods for managing the inherent complexity
of the large IT infrastructures encountered in many
organizations. As a result, Enterprise Architecture
(EA) models usually contain many elements which
are connected through complex relationships. It is
therefore vital to provide suitable methods for (semi-
)automatically analyzing their contents to be able to
benefit from this methodology once it has been suc-
cessfully established in an organization.

Although much research has been done in the EA
domain, most of this work focuses on methodolo-
gies for the development and the representation of en-
terprise models. By contrast, approaches and tech-
niques which explore possible applications scenarios
are very rare (Ndrman et al., 2012; Niemann, 2006).
Regarding the analysis of EA models, a major fo-
cal point exists in their quantification. This encom-
passes the definition and computation of quality at-
tributes such as application usage and service avail-
ability. (Ndrman et al., 2012) Furthermore, it is pos-
sible to evaluate the performance and cost aspects in
the different layers of enterprise models (Jonkers and
Tacob, 2009). Finally, (Matthes et al., 2012) establish
a catalog of KPIs to measure EA management goals.

One of the most important analysis methods how-
ever, is the so-called impact analysis which allows to
simulate the effects of changes (e.g. the modification
of a CRM system) and to assess risks in the current
architecture (e.g. which business operations would
be affected if a specific server goes offline) (de Boer
et al., 2005). To generate this information, an impact
analysis has to evaluate the dependencies between the
architecture’s constituents. However, in order to make
proper assertions about these relationships, it is neces-
sary to evaluate each element in its respective context.
This means, that its relationships with other elements
in the model have to be taken into consideration. For
example, to examine the impact of a server failure on
business processes, one has to determine which ap-
plications rely on this server. This requires a careful
evaluation of indirect and transitive paths in the model
to ensure that all necessary information is retrieved,
while at the same time excluding irrelevant relation-
ships.

Existing approaches and tools for the creation and
analysis of EA models usually rely on a static meta
model structure. This can be a problem since each
organization tends to employ its own meta model,
making the adaption of existing analyses very difficult
(Kurpjuweit and Aier, 2009). To rectify this situation,
more flexible methods for handling structural depen-

47

Fourth International Symposium on Business Modeling and Software Design

dencies are required.

In this paper we present a technique which sup-
ports the context-sensitive impact analysis of EA
models. It is based on the principle of data-flow anal-
ysis, a method which originates from the field of com-
piler construction. Using this approach, it is possible
to derive context-sensitive information by propagat-
ing contextual information along the model’s edges.
Since the developed analysis distinguishes between
different semantic relationship classes it can be easily
adapted to the conventions in different organizations
by mapping the relationship types in the respective
target domain to the proposed categories. Further-
more, it is possible to extend the analysis with indi-
vidual impact propagation rules. To demonstrate the
viability as well as the generic applicability of this
approach, we implement multiple impact analyses for
different EAM languages.

2 IMPACT AND DEPENDENCY
ANALYSIS

According to (Bohner, 2002), determining the effects
of a change requires an iterative and discovery-based
approach. Change impact analysis can be performed
for a single software system, but also on an architec-
tural level for a full application landscape or an en-
terprise architecture. A related topic which is also of
interest in this context is the analysis of dependency
relationships.

Typically, any change which is made to a model
element also affects its neighboring elements (direct
impact). However, as these changes may in turn af-
fect other elements (indirect impact), the effect prop-
agates throughout the model. Consequently, even a
small change in a single element can cause ripple-
effects, resulting in non-trivial consequences. While
the direct impact can be derived from the connectiv-
ity graph, the computation of indirect impacts (n-level
impacts) requires reachability information. However,
since this method approximates potential impacts, it
tends to overestimate the result by generating false-
positives. The precision of the analysis can be im-
proved by using a constraint mechanism or by incor-
porating structural and semantic information (Bohner,
2002).

Most of the work regarding impact analysis
of software focuses on the code level (Lehnert,
2011). Approaches which evaluate architectures usu-
ally only regard concepts such as components, pack-
ages, classes, interfaces and methods. Due to the
limited amount of supported types and the domain-
specific characteristics, these approaches are not suit-

48

able for use in EAM.

Nevertheless, some techniques which target the
UML are more closely related to the EAM domain.
(Briand et al., 2003) propose a methodology for sub-
jecting analysis and design documents to an impact
analysis to detect side effects of changes in the con-
text of UML-based development. To restrict the set
of affected model elements they propose the use of a
coupling measure and a predictive statistical model.
The impact analysis itself is specified using the OCL.
(von Knethen and Grund, 2003) developed an ap-
proach which supports traceability by providing re-
quirements engineers, project planers and maintain-
ers with the ability to monitor the effects that changes
have on software systems. They differentiate between
three types of relationships to define the traces: repre-
sentation, refinement and dependency. To determine
the change impact, they (semi-)automatically analyze
requirement traces using these three categories.

(Kurpjuweit and Aier, 2009) and (Saat, 2010) pro-
pose techniques for EA dependency analysis. Saat
focuses on time-related aspects (org. “zeitbezogene
Abhingingkeitsanalysen”) by considering for each el-
ement its life time, the status (current or proposed) as
well as the life cycle phase with its duration. How-
ever, no execution or implementation details are pro-
vided for this approach. Kurpjuweit and Aier devel-
oped a formal method for flexible and generic depen-
dency analysis. To determine dependent elements,
they use the transitive closure of a set of relations.
They also define an expansion function, which allows
to consider special relation semantics, e.g. hierarchi-
cal refinement or reflective relation types.

(Holschke et al., 2009) as well as (Tang et al.,
2007) propose the use of Bayesian Belief Networks
(BBN) for EA modeling. These approaches rely on
causal dependencies as well as inference methods for
BBN and a diagnosis analysis to determine the im-
pact. The former realizes a failure impact analysis,
theoretically described in the pattern catalogue (Buckl
et al., 2008), using the diagnostic analysis' and the
modeling tool GeNle. As a result, architectural com-
ponents can be ranked with respect to their critical-
ity for a business process. However, this approach
focuses on availability, not on changes. Tang et al.
employ a combination of predictive reasoning to de-
termine affected elements and diagnostic reasoning to
determine the cause of a change. Prior to the analy-
sis, the architect has to assign a probability to each
root node and a conditional probability table to each

ITagt, R.M.: Support for Multiple Cause Diagnosis with
Bayesian Networks. Vol. M. Sc. Delft University of Tech-
nology, the Netherlands and Information Sciences Depart-
ment, University of Pittsburgh, PA, USA, Pittsburgh (2002)

Context-Sensitive Impact Analysis for Enterprise Architecture Management

non-root node.

Propagation rules are another method for deter-
mining the impact of changes. This technique al-
lows to define effects that depend on structural and se-
mantical properties. An iterative application of those
rules to a model yields the direct and indirect im-
pacts. (de Boer et al., 2005) present such rules for
the most important relationships in ArchiMate mod-
els, differentiating between the removal, the exten-
sion and the modification of an architectural element.
However, the definitions are given in an informal and
textual manner and no technical realization is sup-
plied. (Kumar et al., 2008) propose rules that encode
the dependency relationships of the attributes of en-
tities. Changes are thereby propagated to determine
the impact on a defined set of element types, namely
business goals, processes, services and infrastructure
components as well as the relations runs on, provides,
executes and delivers. No mechanism is specified for
implementing the change propagation. (Aryani et al.,
2010) also rely on the propagation concept to define a
conceptual coupling measurement for software com-
ponents. Based on this information a dependency ma-
trix is established which allows to predict change im-
pacts.

In (Lankhorst, 2012), a tool for impact-of-change
analysis is described. The author represents enterprise
architectures in XML and uses the Rule Markup Lan-
guage (RML) to define transformations which repre-
sent the rules which define the impact-of-change. The
RML rules are analyzed through a pattern matching
of the antecedent against the input XML. If a rule
matches, the variables will be bound and an output
XML is generated based on the rule output.

3 A CONTEXT-SENSITIVE
APPROACH TO IMPACT
ANALYSIS

The foundation for the definition of any impact is
the computation of reachable elements. Accord-
ing to (Bohner, 2002), reachability denotes transitive
connections, whereas dependability refers to directly
connected elements. To determine reachability rela-
tionships we employ data-flow analysis, a technique
which is based on the principle of information propa-
gation. This allows to directly implement the follow-
ing recursive specification: An element is reachable
if at least one predecessor element is reachable. In
this context, a predecessor is defined as the source el-
ement of an incoming edge. Since there are typically
no isolated areas in an EA model, this would normally

result in almost all elements being classified as reach-
able. For a more focused analysis, we therefore need
to extend the reachability computation with contex-
tual information. For this purpose, we establish two
different categorization mechanisms for relationships.
For each relationship class in these categories we de-
fine a change propagation rule which specifies how a
change will be propagated through the model.

In the following we will first formalize the rep-
resentations of model and meta model data in a way
which ensures the applicability of the approach even
if an organization employs a customized version of
the meta model. We will then describe a data-flow
based specification of a naive reachability analysis
and subsequently propose extensions which enable a
context-sensitive analysis of change impacts.

3.1 Formalizing the Meta Model and
the Model

The high diversity of meta models results in a major
challenge when devising techniques in the context of
EAM. To overcome this issue, we developed a generic
meta model which is able to support any EA language
based on traditional modeling paradigms. Apart from
abstracting from the particular structure of an input
language, this approach has the benefit of combining
meta model and model data in a single representation.

D EnterpriseModelContaine
T —

EnterpriseMetaModel
metamogel D
0.1
[EnterpriseMetaMod{#]
(from archimatemetamodel)

[MetaModelNode []

elements ffrom archimatemetamodel)

0..

source| 0..1 0..1[target

i 0.* 0..*[incoming
H MetaModelEdge [2]
(from archimatemetamodel)

edge
H MetaModelStereotyr2] 0.7
[from archimatemetamodel) <}

0.1
tereotype

T
[StereotypedElemé} [ModelNode [7]

(from archimatemodel) [J——— (from archimatemodel)

0.*
element;
/snur(e 0.1 0.1 target
mode E] En[errpiseMod@/ outgoin

from archimatemodel)

EnterpriseModel

.. ..*| incon
[ModelEdge [2]
(from archimatemodel)

ning

Figure 1: Generic representation for EA (meta) model data.

A condensed version of this specification is de-
picted in figure 1. The relevant elements can be de-
scribed as follows: Each concept of the respective
target EA language is translated into either a Meta-
ModelNode or a MetaModelEdge. Connections be-
tween these elements have to be established accord-
ingly during the transformation process. Both types

49

Fourth International Symposium on Business Modeling and Software Design

also carry additional meta information such as their
stereotype, the concept’s name and its properties. In-
stances from the target EA model are converted into
ModelNodes and ModelEdges and connected to their
respective meta model stereotypes.

3.2 Analyzing Reachability for EA
Models

The computation of reachability information forms
the basis for the subsequent impact analysis. An ele-
ment is declared reachable, if there exists a path con-
necting the element to the starting point (indirectly
connected elements). The reachability analysis is car-
ried out using the Model Analysis Framework (MAF)
(Saad and Bauer, 2011) which supports the specifi-
cation and execution of data-flow based analyses on
models.

Data-flow analysis is used by compilers to derive
optimizations by examining the structural composi-
tion of program instructions. Canonical examples in-
clude the calculation of reaching definitions and vari-
able liveness. For this purpose, the program is con-
verted into a control-flow graph with the nodes rep-
resenting the basic blocks and the edges denoting the
flow of control. A set of data-flow equations is then
evaluated in the context of each node. Each equation
takes the results computed at the immediate prede-
cessor nodes as input, applies a confluence operator
(union or intersection) to combine these sets and fi-
nally modifies the values to reflect the effects of the
local node’s instructions. Effectively, this method
describes an equation system which propagates in-
formation throughout the underlying graph, thus en-
abling a context-sensitive evaluation of each instruc-
tion. If loops are present, fixed-point evaluation se-
mantics are employed to approximate the runtime be-
havior of the program.

In (Saad and Bauer, 2013) we discussed an adap-
tion of this analysis technique to the modeling do-
main which we referred to as a generic “programming
language” for context-sensitive model analysis. This
approach defines a declarative specification language
that allows to annotate data-flow attributes at meta
model classes that can subsequently be instantiated
and evaluated for arbitrary models. This technique
has several significant advantages: Data-flow analy-
sis provides inherent support for the implementation
of recursive specifications which iteratively propagate
information throughout a model. Also, since informa-
tion is routed along model edges, each model element
can be evaluated in its overall context, thus eliminat-
ing the need for static navigational expressions which
are common in languages such as OCL. This is impor-

50

tant in the EAM domain where the structure of both
meta models and models is highly dynamic. Finally,
the usage of fixed-point semantics allows to imple-
ment a correct handling of cyclic paths.

Using MAF, a reachability analysis for model ele-
ments can be specified in the following way:

1: analysis reachability_analysis {
attribute is_reachable : Boolean initWith false;

extend node with {
occurrenceOf is_reachable calculateWith

->includes (true);
}

2:
3:
4
5: self.incoming.source.is_reachable ()
6
7
8: extend startnode with {

9 occurrenceOf is_reachable calculateWith true;
10: }

11: }

As described above, an element el is reachable
from another element e2, if there exists a path be-
tween el and e2. Here, we assume that the meta
model defines the classes node and startnode, the
latter one being a specialization of the former one.
We further classify changed elements in the model
as startnodes for the analysis. The reachability sta-
tus is computed by a data-flow attribute is_reachable
of type boolean which is initialized with the value
false (line 2). Lines 3-7 attach this attribute to all in-
stances of the node class. To determine the reacha-
bility status of a node, the data-flow equation in lines
5-6 accesses the is_reachable values computed at the
respective node’s predecessors, thereby directly im-
plementing the recursive specification. Finally, lines
8-10 overwrite this equation at startnodes which are,
by definition, always reachable.

3.3 Context-aware Change Propagation

The execution of the reachability analysis in section
3.2 will result in an large result set, containing mostly
false positives regarding change impact. By enrich-
ing the rules with context-specific declarations, the
impact set can be restricted to contain only meaning-
ful data and to additionally reflect different types of
changes.

In the following, we will differentiate between the
change types extend, modify and delete as proposed
by (de Boer et al., 2005). Extensions refer to cases
where new issues are added but the initial function-
ality or structure remains the same. Consequently,
extensions do not propagate to depending elements.
By contrast, a modification also affects the function-
ality or the structure and therefore it cannot be guaran-
teed that initially provided issues will still be available

Context-Sensitive Impact Analysis for Enterprise Architecture Management

or that their behavior remains unchanged. Finally,
deletion indicates that an element will be removed
from the enterprise architecture. The change types
are prioritized as follows: delete overrides modifies
overrides extends overrides no change (NO). Depend-
ing on the respective requirements, additional change
types can be implemented.

Due to the lack of detailed information in enter-
prise architecture models, an accurate definition of the
impact of a change is not possible. We therefore pro-
pose to approximate the impact using a worst case and
a best case analysis similar to the practices in software
analysis. For the worst case, the impact is defined as
the maximal set of affected elements, whereas the best
case includes only the minimal set. The real impact
typically lies somewhere between both cases.

To implement the context-dependent impact anal-
ysis, we define rules which are able to differentiate be-
tween the different change and relationship types. To
make the technique generically applicable, we intro-
duce custom relationship classes to which the specific
relationship types in the target EA language can be
mapped. The developed specifications can be divided
into two categories: In section 3.3.1 describe how the
propagation of effects is influenced by different rela-
tionship classes while section 3.3.2 introduces an ad-
ditional classification along different effect types.

3.3.1 Change Propagation Rules Depending on
Relationship Classes

To classify the relationships of an enterprise architec-
ture, we grouped them according to their semantics,
which we identified through a literature review of ex-
isting EA frameworks and their meta models. This in-
cludes the Core Concepts Model (CC) of ArchiMate
(The Open Group, 2012) and the DM2 Conceptual
Data Model of DoDAF (U.S. Department of Defense,
2010).

Overall, we were able to identify five classes of
relevant EA relationship types: Locate denotes the al-
location to some location or organization unit. Any
kind of provision of functionality, information and be-
havior is of the type provide while the consume class
denotes the consumption of those elements. Struc-
tural dependency relationships define the structure or
organization of entities in one layer. The behavioral
dependency class on the other hand summarizes rela-
tionships which declare dependencies between the be-
havior of elements in a single layer which are neither
of the type provide nor consume. The following table
lists all classes along with corresponding examples
from the ArchiMate Core Concepts and the DoDAF
DM2.

Table 1: Classification of EA relationships.

class examples

locate CC: assignment
DM?2: is-at

provide CC: realize, assess

DM?2: provide, performedby

consume CC: used by, access

DM?2: consume
structural CC: aggregate, composite
dependency DM?2: part-of
behavioral CC: trigger, flow to
dependency

Note that the mapping in table 1 is only a sugges-
tion based on our interpretation of the concepts and
has to be adapted if an organization assigns different
semantics to these types. It is also important to real-
ize that each relationship may belong to multiple cat-
egories. In the worst case analysis, the strongest rule
will be chosen while the best case analysis will use
the weakest one.

To formalize the change semantics of these
classes, we employ the following syntax:

AX = BY (1)

This statement indicates that if element A is changed
in the manner X then element B has to be changed in
manner Y. A and B represent the source and the target
of the relationship while X, Y € {modify, delete, ex-
tend}. It is also possible to cluster change operations
on the left hand side. A.{X,Y} — B.Z means that if
A is changed in the manner X or in the manner Y, B
has to be changed in the manner Z. Optionally, it is
possible to differentiate between a worst case (WC)
and a best case (BC) impact on the right hand side of
the rule.

We will now demonstrate this concept using the
location relationship. Assuming that an applica-
tion component (A) is hosted by a organization unit
(B), this connection is mapped to the class located
at. If a change to the application component has
no effect on the organization unit the rule will be
A{del,mod,ext} — B.NO. If, on the other hand, the
organization unit is deleted, the application compo-
nent loses its host. In the worst case it needs to be
deleted as well while in the best case it will simply
be assigned to another host. This is formalized as:
B.del - WC:A.del, BC: A.ext. Finally, if the organi-
zation unit is modified or extended, the worst case de-
mands that the application component has to be mod-
ified too while, in the best case, it remains as is. This
can be addressed with the rule: B.{ext,mod} — WC':
A.mod, BC : A.NO. Change rules for other relation-
ship classes are defined in a similar manner as shown
in table 2.

51

Fourth International Symposium on Business Modeling and Software Design

Table 2: Impact rules for the relationship classes.

class rule

located at A.{del,mod,ext} — B.NO
B.del — WC: A.del BC: A.ext
B.{extmod} — WC: A.mod BC:
A.NO

provides A.del — WC: B.del BC: B.ext
A.mod — WC: B.mod BC: B.NO
A.ext — WC: B.ext BC: B.NO
B.{del,mod,ext} - ANO

consumes A.{del,mod,ext} — B.NO
B.{del,mod} — WC: A.mod BC: A.ext
B.ext - A.NO

structurally A.del — WC: B.del BC: B.mod

dependent A.{mod,ext} — B.NO
B.{del,mod} — WC: A.mod BC:
A.NO
B.ext - WC: A.ext BC ANO

behaviorally A.{del,mod,ext} — B.NO

dependent B.{del,mod,ext} — ANO

3.3.2 Change Propagation Rules Depending on
Effect Types

In addition to the classification along the lines of rela-
tionship types, a differentiation between different ef-
fect types can be useful as well. We therefore define
the following three effects: strong, weak and no effect.
The type of effect has to be specified for each direc-
tion of a relationship. The notation X — Y indicates
that a change in the source has a effect of type X on
the target and vice versa. Overall, this leads to six ef-
fect classes: Strong-Strong, Strong-Weak, Strong-No
effect, Weak-Weak, Weak-No effect and No effect-No
effect.

The semantics of these effects can be defined us-
ing rules similar in nature to those presented in section
3.3.1. They are shown in table 3.

Table 3: Impact rules for the effect classes.

effect rule

strong A.del — WC: B.del, BC: B.ext
A.mod — B.mod
A.ext — B.ext

weak A.del - WC: B.mod, BC: B.no
A.mod — WC: B.mod,BC: B.ext
A.ext — WC: B.ext, BC: BNO

no effect A .{del,mod,ext} — B.NO

If A strongly affects B, this indicates that if A is
deleted, in the worst case, B has to be deleted as well
and, in the best case, it only needs to be extended. A
modification in A leads to a modification of B and the
same applies to extensions. If, for example, an appli-
cation component realizes a service, then the appli-
cation component has a strong impact on the service
while the service may only have a weak impact on the
application component. This specific interpretation of

52

realize would result in an assignment to the Strong-
Weak class. A weak effect denotes that the deletion
of A conducts no change in B in the best case and a
modification in the worst case. A modification of A
in the worst case requires a modification of B. In the
best case it has only to be extended. Finally if A is
extended, in the best case B must not be changed, in
the worst case it has to be extended, too. If the rela-
tionship is mapped to no effect, any change of A has
no effect on B.

Further examples for effect mappings of Archi-
Mate relationships are:

Strong-Weak: realize
e Strong-No effect: aggregation
o Weak-No effect: use, assign

o Weak-Weak: triggers

3.3.3 Realization of the Rules

The rules defined in sections 3.3.2 and 3.3.1 can be
realized as data-flow equations. First, the meta model
and model data has to be converted to the generic rep-
resentation presented in section 3.1. Then, the status
of the changed elements whose impact should be ana-
lyzed is set to the respective value while the result for
all other elements is initialized with no change. After-
wards, these values will be iteratively recomputed to
propagate the effects of the changes. For illustration
purposes, we include a Java-based implementation of
the rule which calculates the best case result based on
the presented effect types:

1: Object node_changestatus_bestcase(Node currentNode){

2: for (Edge edge : currentNode.getIncomingEdges()){
3: Status sourceStatus = edge.source.getStatus()

4: Status currentStatus = currentNode.getStatus()
5: if (edge.effectClass == StrongEffectTarget)

6: if (sourceStatus == (DEL||EXT))

7: return computeStatus(currentStatus, EXT)
8: else if (sourceStatus == MOD)

9: return computeStatus(currentStatus, MOD)
10: if (edge.effectClass == WeakEffectTarget)

11: if (sourceStatus == (DEL||EXT))

12: return computeStatus(currentStatus, NO)
13: else if (sourceStatus == MOD)

14: return computeStatus(currentStatus, EXT)
15: if (edge.effectClass == NoEffectTarget)

16: if (sourceStatus == (DEL||MOD||EXT))
17: return computeStatus(currentStatus, NO)
18: }

19: for (Edge edge : currentNode.getOutgoingEdges()){
)

Context-Sensitive Impact Analysis for Enterprise Architecture Management

The status of the current element (currentNode)
depends on the status of the connected elements as
well as the direction of the relationship. Therefore,
to correctly determine the change status, all incom-
ing (lines 2 - 18) and outgoing edges (lines 19 - 21)
have to be processed. The status value which has
been computed for a connected element is retrieved
through an invocation of getStatus() (line 3). This
call instructs the data-flow solver to recursively com-
pute and return the requested value. Based on the type
of each incoming edge, it is then decided whether it
has a strong effect (line 5), a weak effect (10) or no
effect (15) on its target. The concrete type of the
change is determined by evaluating the status of the
edge’s source element (lines 6-9, 11-14, 16-17). Fi-
nally, computeStatus() is invoked to compute and re-
turn the status of the local element. To implement the
priorization relationships between the change types,
e.g. to ensure that a weak change like no change can-
not override a stronger one like delete, this method
takes both the current and the newly computed status
as input. A similar approach is used to calculate the
result for the source elements of outgoing edges (line
19-21).

3.4 Customization of the Impact
Analysis

In the case where the rules proposed in section 3.3
are not sufficient to capture all requirements of the
organization, it is possible to customize the analysis.
For example, if a specific relationship type cannot be
mapped to one of the proposed classes, a new rule
can be created. In addition to evaluating relation-
ship types and change status of connected elements,
a rule may also consider the type of the connected
elements or class properties. It would also be possi-
ble to extend the rule definitions with the ability to
quantify a change (e.g. in terms of costs). These
features can be implemented through additional data-
flow attributes. For example, to compute potential
savings on IT maintenance, the maintenance costs of
all deleted application and infrastructure components
and their corresponding services could be aggregated.

Another customization consists of a modification
of the rule set to support change probabilities. Instead
of a single status, we can define four separate data-
flow attributes, which compute the respective prob-
abilities for the types delete, modification, extension
and no change. Additionally, the rule specification
would have to be extended. For example, a rule could
be defined as:

P(Adel) =X — P(B.del) =08xX (2

This means that if the probability that A is deleted is
X, then the probability that B has to be deleted is 0.8 x
X or, in other words, if A is deleted then in 80% of the
cases B will be deleted as well.

4 EVALUATION

Most of the research work regarding change impact
analysis has been carried out theoretically and thus
has not yet been applied to real architecture models
(e.g. (de Boer et al., 2005), (Kurpjuweit and Aier,
2009), (Kumar et al., 2008)). An exception exists in
the work of (Tang et al., 2007) who employ predic-
tive and diagnostic reasoning in BBN. However, one
disadvantage of their approach can be found in the
high effort required to annotate probability informa-
tion. The technique proposed in this paper simpli-
fies analysis specification through a generic represen-
tation of model data and through predefined and ex-
tensible categorizations of relationships and effects.

Many existing approaches do not address prob-
lems relating to cyclic dependencies or contradicting
results, the latter one for example being a weakness
of the tooling proposed by (Lankhorst, 2012). Fur-
thermore, the issue of the scalability of the technique
which is based on pattern matching and model trans-
formations is not considered and the employed RML
technique is highly dependent on specific usage sce-
narios as well as on the respectively chosen EA lan-
guage. By utilizing the data-flow analysis method
with its inherent support for cyclic dependencies, re-
cursive specifications and iterative result computa-
tion, we are able to address these challenges. The
scalability of DFA (and the Model Analysis Frame-
work in particular) has been demonstrated in the con-
text of other domains including the analysis of exten-
sive AUTOSAR models (Kienberger et al., 2014).

For a practical evaluation, we implemented the
proposed methods in the form of an addin for MID In-
novator (MID GmbH, 2014) using the MIDWagen ex-
ample which is shipped with the tooling. MIDWagen
describes the IT landscape of a car rental organization
with its actors, business services, business processes,
application components and services as well as the
required infrastructure components and services. Al-
though it is not a real world example, the level of de-
tail and the extensibility of the underlying EA lan-
guage enables a thorough evaluation of the viability
and the robustness of our technique.

To illustrate the application of our approach, we
focus on a modification of the Booking System. We
assume that this component, which is responsible for
payment transactions, has to be modified due to secu-

53

Fourth International Symposium on Business Modeling and Software Design

rity issues. We further state that this change will only
affect the Payment service while the Bonus Booking
service does not have to be adapted. The modification
of the Payment application service (AS) also causes
a change to the supporting Return service, which in
turn will affect the Payment business service (BS) as
well as the Renter role. Figure 2 shows the respective
excerpt from the MIDWagen model.

o oo
w (crra) (™)
adbgroies 4
T oo oD
—) e \>>—> Return Car ‘?>>‘T_> i w>>ﬁ> ColletRanus >
. \\
Take 050k Car

<
WO
Accounting Service

Figure 2: Excerpt of the ArchiMate model for the MID-
Wagen Use Case (MID GmbH, 2014) with the worst case
change propagation path.

For this scenario, we employ the relationship clas-
sification described in section 3.3.1. Since the model
is given in the ArchiMate language, we are able to use
the mappings listed in table 1.

In figure 2, the resulting worst case change prop-
agation path is indicated by red arcs. Solid lines rep-
resent paths along with a change is forwarded, while
dashed lines stand for relationships, which are con-
sidered but do not result in a change propagation. The
final impact set consists of the elements {Payment
AS modified, Bonus Booking modified, Return mod-
ified, Collect Bonus modified, Payment BS modified,
Renter modified}, while the final result set for the best
case analysis is empty. Both results represent realistic
approximations which have to be interpreted consid-
ering the severity of the modification. In the best case
scenario (e.g. performance issues), the modification
of the Booking System does not affect the provided
functionality, and therefore the service does not need
to be changed. In the worst case, for example a sub-
stantial change in the functionality due to security is-
sues, the effects of the change propagate to the role
in the business layer which is potentially affected by
the modification. Both impact sets represent approx-
imations, which can be of great value for estimating

54

the real effects of a change especially in early design
stages.

Carrying out the analysis using the effect classes,
the result consists of {Payment AS modified, Return
modified, Payment BS modified, Renter modified}.
This result, which lies in between the worst and the
best case of the relationship analysis, is able to pro-
vide more detailed information in the case where the
required data is available.

S CONCLUSIONS

In this paper we proposed a context-sensitive impact
analysis technique for EA models. The approach re-
lies on two underlying concepts: The problem of di-
verse EA languages is addressed by a generic repre-
sentation of model data while the data-flow analysis
method enables an intuitive specification of analyses,
which depend on the iterative propagation of results.

We argued that a traditional reachability analysis
which returns all direct and indirect neighbors of an
element is not suitable in the EA context and there-
fore has to be extended with context-sensitive prop-
agation rules. For this purpose, we defined a rela-
tionship classification which reflects the semantics of
different edge types as well as the semantics of the
change types extend, modify and delete. By apply-
ing this concept, change effect propagation depends
both on the change type as well as on the meaning
of the relationships which connect the respective ele-
ments. For example, if an element which is still in use
is deleted, this change will affects consumers. If, on
the other hand, the element is extended, leaving the
existing functionality unchanged, the potential effect
is not propagated.

For a more focused analysis, we proposed two
different kinds of relationship classifications. Sec-
tion 3.3.1 categorizes relationships according to their
semantics with respect to the architecture by defin-
ing the classes located at, provides, consumes, struc-
turally dependent and behaviorally dependent. In sec-
tion 3.3.2, the severity of a change on the respective
source and the target elements is considered by intro-
ducing the categories strong, weak and no effect. In
both cases we defined propagation rules in the form of
DFA equations for best and worst case analysis. By
extending these definitions, it is possible to include
support for organization-specific semantics and addi-
tional relationship types. Executing the analysis us-
ing the DFA solver of the MAF framework yields the
results which can be interpreted as estimations that
reflect the best and worst case of the actual impact.

The combination of the generic model represen-

Context-Sensitive Impact Analysis for Enterprise Architecture Management

tations, extensible DFA-based analysis specifications
and the classification approach for relationships en-
sures that this technique can be applied to the various
EA conventions found in different organizations. Fur-
ther work has to be done to determine a suitable visu-
alization of the results. It would also be interesting to
evaluate rules for other impact scenarios such as fail-
ure impact analysis which analyzes the availability of
architecture elements. Finally, it should be explored
how the computation of best and worst case results
could be improved through an integration of proba-
bility distributions. At the moment we only support a
simple and naive way for the integration of probabili-
ties.

ACKNOWLEDGEMENTS

This work was partially sponsered by the FuE-
Programm Informations- und Kommunikationstech-
nik Bayern. The authors would like to thank MID
GmbH for providing their demo use case, licenses for
their tool as well as for their support during the im-
plementation.

REFERENCES

Aryani, A., Peake, 1., and Hamilton, M. (2010). Domain-
based change propagation analysis: An enterprise sys-
tem case study. In 2010 IEEE International Confer-
ence on Software Maintenance (ICSM), pages 1-9.

Bohner, S. (2002). Software change impacts-an evolving
perspective. In International Conference on Software
Maintenance, 2002. Proceedings, pages 263-272.

Briand, L., Labiche, Y., and O’Sullivan, L. (2003). Impact
analysis and change management of UML models. In
International Conference on Software Maintenance,
2003. ICSM 2003. Proceedings, pages 256-265.

Buckl, S., Emnst, A., Lankes, J., and Matthes, F. (2008).
Enterprise Architecture Management Pattern Catalog
(Version 1.0). Technical Report TB 0801, Technical
University Munich, Chair for Informatics 19.

de Boer, F., Bonsangue, M., Groenewegen, L., Stam, A.,
Stevens, S., and van der Torre, L. (2005). Change
impact analysis of enterprise architectures. In Infor-
mation Reuse and Integration, Conf, 2005. IRI -2005
IEEE International Conference on., pages 177 — 181.

Holschke, O., Nrman, P., Flores, W., Eriksson, E., and
Schnherr, M. (2009). Using enterprise architecture
models and bayesian belief networks for failure im-
pact analysis. In Service-Oriented Computingl CSOC
2008 Workshops, page 339350.

Jonkers, H. and Iacob, M.-E. (2009). Performance and
cost analysis of service-oriented enterprise architec-
tures. Global Implications of Modern Enterprise In-

formation Systems: Technologies and Applications,
IGI Global.

Kienberger, J., Minnerup, P., Kuntz, S., and Bauer, B.
(2014). Analysis and Validation of AUTOSAR Mod-
els.

Kumar, A., Raghavan, P., Ramanathan, J., and Ramnath, R.
(2008). Enterprise Interaction Ontology for Change
Impact Analysis of Complex Systems. In IEEE Asia-
Pacific Services Computing Conference, 2008. AP-
SCC 08, pages 303 -309.

Kurpjuweit, S. and Aier, S. (2009). Ein allgemeiner
Ansatz zur Ableitung von Abhngigkeitsanalysen auf
Unternehmensarchitekturmodellen. Wirtschaftinfor-
matik Proceedings 2009.

Lankhorst, M. (2012). Enterprise Architecture at Work.
Springer-Verlag Berlin and Heidelberg GmbH & Co.
KG, Berlin.

Lehnert, S. (2011). A review of software change impact
analysis. Ilmenau University of Technology, Tech.
Rep.

Matthes, F., Monahov, 1., Schneider, A., and Schulz, C.
(2012). EAM KPI Catalog v 1.0. Technical report,
Technical University Munich.

MID GmbH (2014). MID Innovator for Enterprise Ar-
chitects. in: http://www.mid.de/produkte/innovator-
enterprise-modeling.html, accessed 15/04/2014.

Narman, P., Buschle, M., and Ekstedt, M. (2012). An enter-
prise architecture framework for multi-attribute infor-
mation systems analysis. Software & Systems Model-
ing, pages 1-32.

Niemann, K. D. (2006). From enterprise architecture to IT
governance. Springer.

Saad, C. and Bauer, B. (2011). The Model Analysis Frame-
work - An IDE for Static Model Analysis. In Pro-
ceedings of the Industry Track of Software Language
Engineering (ITSLE) in the context of the 4th Interna-
tional Conference on Software Language Engineering
(SLE’11).

Saad, C. and Bauer, B. (2013). Data-flow based Model
Analysis and its Applications. In Proceedings of the
16th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS’13).

Saat, J. (2010). Zeitbezogene Abhingigkeitsanalysen
der Unternehmensarchitektur. Multikonferenz
Wirtschaftsinformatik 2010, page 29.

Tang, A., Nicholson, A., Jin, Y., and Han, J. (2007). Using
bayesian belief networks for change impact analysis in
architecture design. Journal of Systems and Software,
80(1):127148.

The Open Group (2012). ArchiMate 2.0 specification: Open
Group Standard. Van Haren Publishing.

U.S. Department of Defense (2010). The DoDAF
Architecture Framework Version 2.02. in:
http://dodcio.defense.gov/dodaf20.aspx, accessed
15/03/2015.

von Knethen, A. and Grund, M. (2003). QuaTrace: a
tool environment for (semi-) automatic impact analy-
sis based on traces. In International Conference on
Software Maintenance, 2003. ICSM 2003. Proceed-
ings, pages 246-255.

55

The Intertwinement of Architectural Governance and
Enterprise I'T-Architecture

Enterprise IT-Architecture Viewed as Boundary Object from a Complex Adaptive

Systems View

Marijn Janssen

Faculty of Technology, Policy & Management, Delfi University of Technology, Jaffalaan 5, Delft, The Netherlands

Keywords:

Abstract:

m.f-w.h.a janssen@tudelft.nl

Enterprise Architecture, IT-Architecture, Governance, Architectural Governance, Organizational Networks,
Public-private Networks, Business Networks, Boundary Objects, Complex Adaptive Systems.

Organizations collaborate more and more in networks in which the boundaries between organizations are
flux to changes. The collaborating organizations have various degrees of technology-readiness, capabilities,
heterogeneous systems and processes which are developed over time. Despite these differences these
organizations have to work together in a loosely coupled structure, where the overall process performance
depends on the weakest chain. This paper explores the intertwinement of governance and enterprise IT-
architecture (EA) by adopting a complex adaptive systems perspective and viewing EA as boundary object.
Architects can act as boundary spanners and architectural models and documents as boundary artefact. Both
help in creating shared understanding. Governance and EA are intertwined and need to be developed in
concert to realize its value. Our analysis shows that architecture and governance are mutual dependent and

influence each other.

1 INTRODUCTION

Organizations cooperate more and more in networks
and are exchanging information with each other.
Often this is donated as organizational networks
(Provan and Milward, 2001), business networks
(Short and Venkatraman, 1992), public-private
networks (Grimsey and Lewis, 2007). The essence is
that a number of organizations work together in a
loosely coupled structure which is subject to
variations. Organizational network arrangements are
aimed at coordinating horizontal and vertical
dependencies between agencies.

Often the collaborating organizations are
heterogeneous in many aspects which complicates
cooperation. Each of the organizations have their
own systems and their IT-architecture which has
been developed independently of the other
organizations. Whereas collaboration requires
interoperability at all levels including the technical,
syntax, semantic and pragmatic level. the pragmatic
layer refers to the context-sensitive aspect of
meaning (Singh, 2002).

Enterprise IT-architecture (EA) is based on

56

statements of how an enterprise wants to use its
Information and Communication Technology (ICT)
to accomplish its strategy and relate this to the vision
of what ICT has to offer for the enterprise and how
this should be realized. EA is an instrument to
ensure that in business networks can be collaborated
in an interoperability, a flexible and agile manner.
EA can be used to align the own IT with the IT of
other organizations and guide design decisions and
new initiatives. As such, it is closely intertwined
with architectural governance (AG). A lack of
effective IT governance can easily result in failed
development projects or lack of collaboration
(Peterson, 2004). AG can be viewed as the processes
and authority for decision-making concerning the
use and development of EA.

Despite the significance of having governance
the architecture function is often disconnected from
the other parts of the enterprise. An EA identifies the
main components of the enterprise, its information
systems, the ways in which these components work
together in order to achieve defined objectives and
the way in which the systems support business
processes. Architectures are meaningless if they are

The Intertwinement of Architectural Governance and Enterprise IT-Architecture - Enterprise IT-Architecture Viewed as

not adopted and used. Furthermore, architectures
need to be flexible and agile to incorporate new
technology. Enterprise Architecture and Governance
(EAGQ) is an upcoming field which influence the use,
success and adoption of new technology. The
relationship between EA and AG has been given
limited attention and are influenced and shaped by
each other. In this paper this relationship is further
explored. In the next section we explore the
literature and conclude that

2 BACKGROUND

2.1 Organizational Networks

Networks have become a form of organizing in
which multiple organizations collaborate together.
These organizations are often autonomous and make
their own decisions. Organizations cooperation in a
business network typically differ in many aspects,
including.

e Objectives and interests

e Organization structures,

o Degree of technology-readiness

e Heterogeneous type systems

e Set of standards and architectural choices

Service level agreements

o Set of capabilities

These characteristics makes it often hard to
collaborate in networks. In addition there might be
differences like culture and challenges like unclear
responsibilities which further complicate
collaboration. Yet linking among organizations is
vital, because the connect organizations to one
another.

2.2 Enterprise IT-Architecture

Enterprise IT-architecture (EA) aims to bridge the
gap between organizational and technology aspects
by looking at various levels of abstraction and
adopting different stakeholder views (Zachman,
1987). EA can describe or prescribe the
dependencies among a large number of
heterogeneous elements to ensure that these
elements are addressed. In this way, EA can guide
design decisions and provide direction for
progressing towards a next generation infrastructure
(Janssen et al., 2009).

In essence, EA should address the dependencies
among a large number of heterogeneous elements at
both the organizational and technical levels (Doucet

Boundary Object from a Complex Adaptive Systems View

et al, 2008). Traditionally, the purpose is to
effectively align the strategies of enterprises with
their business processes and the coordination of their
resources (Zachman, 1987). EAs define and
interrelate data, hardware, software, and
communication resources, as well as the supporting
organization required to maintain the overall
physical structure required by the architecture
(Richardson et al., 1990). The primary strength of
the EA approach is that it has well-defined concepts
and instruments to control and develop complex,
technological systems. Nevertheless, much of the
past research on EA can be criticized for taking a
technologist view or being too abstract. Architecture
models, principles and standards make up the
content of EA (e.g. Simon et al., 2013, Janssen and
Hjort-Madsen, 2007).

2.3 Architectural Governance

Architecture and governance are viewed as
interrelated for a long time. Spewak (1992)
introduces architecture as a process. Architecture as
a process giving directions to the development of a
system. In contrast, architecture as an instrument is a
blueprint describing the relationships among the
components in the system. The Architecture as a
process view looks at how the architecture is used as
an organizational routine to shape information
projects.

Governance represents the framework for
decision rights and accountabilities to encourage
desirable behaviour in the use of resources (Weill,
2004). Architectural Governance is necessary for
creating, designing, assembling, maintaining and
exploiting EA. Once the decision to introduce a EA
is made a coordinated set of governance mechanisms
is necessary. Architects and managers will follow
these governance mechanisms on a daily basis to
guide EA development and maintenance.

In general there are three kinds of governance
mechanisms: (1) decision-making structures, (2)
alignment processes and (3) formal communications
(Weill and Ross, 2005). Decision-making structures
refer to the organisational committees and roles for
decision-making. Alignment processes are
management techniques for securing widespread and
effective involvement in the architecture use, the
making of architectural decisions and EA
implementation. This includes the way the EA
function is funded. Formal communications is about
the communication between EA function and the
other parts of the organization and should ensure a
good relationships between the both of them.

57

Fourth International Symposium on Business Modeling and Software Design

A lack of understanding about how decisions are
made, what processes are being implemented and
what the desired outcomes are might disrupt
organizational processes (Weill, 2004). Hence clear
procedures and processes and other governance
mechanisms are views as crucial. More
communication generally means more effective
governance (Weill and Ross, 2005).

2.4 Boundary Spanning

Organizational networks are underpinned by
reciprocity, mutual trust and willingness to share
information. Links among organizations and
departments are vital to competitive advantages.
These types of links among organization should
occur at all levels. Boundary spanning can be done
by persons who are connected to two organizational
entities or by artefacts that are used by different

entities as shown in figure 1.

Organization B

Boundary spanners
Architects
Managers

o Account managers

Organization A \

Enterprise
architecture artefacts

Architecture models
Documents.
Principles

Figure 1: Boundary objects in enterprise architecture.

Boundary spanners are organizational members
who link their organization with other organizations
(Thompson, 1967). Architectures are typically
boundary spanners as the link business and IT
people. Boundaries spanners intermediate
interactions with other department or organizations
and are gatekeepers at the same time. As gatekeepers
they select and filter information before distributing
these in their own organizations. Boundary spanners
should have knowledge for whom information is
relevant and make decisions concerning the
distribution of gathered information. Boundary
spanners convey influence between the various
groups and at the same time represents the
perceptions, expectations, and values of the own
organizations to this groups (Friedman and Podolny,
1992).

Boundary objects may include physical product
prototypes, design drawings, shared IT applications,
standard business forms, or even shared abstract
constructs such as product yield (Levina, 2005).

58

Boundary objects are referred to as conceptual or
physical artefacts that reside in the interfaces among
organizations (Gal et al., 2008). Boundary objects
are plastic and provide interpretive flexibility, but
with enough immutable content to maintain integrity
and create shared understanding.

From a functional perspective, a boundary object
is an artefact shared by a community of subjects like
architectural documents, blueprints, but also systems
used by different persons. Thee artefact are used by
individual to reach their own goals. Such an object
can be a physical object, but can also be intangible
like a shared visions on how EA should be like. A
boundary object must be "both plastic enough to
morph to local needs and constraints of the several
parties employing them, yet robust enough to
maintain a common identity across sites" (Star and
Griesemer, 1989 p. 393). Boundary objects help
interacting organizations facilitate Ccross-
organizational communication and form an
organizational identity (2008), while they can also
act as gatekeepers that selectively filter information
between the organizations. Hussenot and Missionier
(2010) depict them as bearers of compromises that
promote cooperation between the stakeholders
(p-274). Therefore, boundary objects should be able
to bear various meanings assigned by different
organizations while serving as a common reference
point to the members of multiple organizations when
they engage in mutual practice (Star and Griesemer,
1989).

For a boundary object to emerge, a new joint
field of practice must be introduced (Levina and
Vaas, 2005). For example, an architectural document
or blueprint can be a joint field of practice.
However, not every artefacts might become a
boundary object in practice. Human agents in some
organizations may not see its local usefulness or the
artefact may fail to establish a common identity
across all organizations (Levina and Vaas, 2005).
Often effective governance mechanisms are
necessary to ensure that persons and artefacts
become boundary spanners. Little is known how
boundary spanners and artefacts look like and about
their effectiveness.

2.5 Complex Adaptive Systems

The basic idea of Complex Adaptive Systems (CAS)
is that the level of analysis is at a lower level of
aggregation. In other words the behaviour of a
system is made up of interacting subsystems.
Although there is no single uniform definition, an
generally accepted definition of CAS is “a system

The Intertwinement of Architectural Governance and Enterprise IT-Architecture - Enterprise IT-Architecture Viewed as

that emerges over time into a coherent form, and
adapts and organizes itself without any singular
entity deliberately managing or controlling it’
(Holland, 1996 p.10). Anderson (1999) found that
complex adaptive systems can be summarized in
terms of four properties; agents with schemata, self-
organization, coevolving agents, and system
evolution. Translated to organizational networks the
four properties can be described as follows.

1. Agents with Schemata. An organization is made
up of individuals, coalitions with have non-linear
interactions. This dynamic behaviour needs to be
understood. Architecture and governance
influence the behaviour of individual agents to
accomplish system level changes.

2. Self-organization. Agents are connected to and
interacting with each other resulting in dynamic
behaviour. By interacting with each other
feedback loops are created with results in
updates of the architecture and governance. In
organizational networks there is no single
coordinator directing these interactions, instead
self-organization emerges from the interactions.

3. Co-evolving Agents. Individual agents are
directed by others and follow their own interests.
There is a continuous flux of changes and agents
are continuously co-evolving with them. As a
consequence of these feedback loops a small
change might result in a whole chain of reaction.

4. System Evolution. New organizations and
persons can enter and others can appear and the
linkages among agents can change over time
resulting in system evolution. New organizations
or persons might become part of the network.

CAS can be used to predict that EA and AG
influence each other and emerge over time.
Although EA is designed the EA elements will be
influenced by the governance. For example if
governance does not require adherence to certain
principles, then these principles will likely not be
maintained and further developed. The recognition
that the principles are necessary to accomplish
certain benefits might result in the mandatory use of
principles.

Organization theory often treat complexity as an
independent variable, whereas in reality behaviour
of complex systems is hard to predict because it is
nonlinear (Anderson, 1999). Architecture and
governance aspects might influence the stakeholders
which in turn influence each other and the
architecture and governance. Capturing the
nonlinear outcomes of many interacting components
is difficult (Casti, 1994).

Boundary Object from a Complex Adaptive Systems View

3 RESEARCH METHOD

The goal of this research is to understand the
relationship between EA and AG. The results will
add to our knowledge concerning the design and
management of architectures and accompanying
governance mechanisms. Figure 2 shows the
research model. The model is based on the mutual
dependence between architecture, governance and
organization performance. The constructs in the
model can be extend based on the understanding
within a case study. For example organizational is
likely to differ per situation as organizations might
have different objectives. Different objectives might
in turn influence the EA and AG.

Governance

e Alignment processes,

* Roles and responsibilities

e Authority for decision-
making

A Organizational performance

Interoperability
Flexibility
Agility

4

Enterprise IT-archtiecture

* Architecture models
* Documents
e Principles

Figure 2: Research model.

We used a participative group session with
representatives from various organizations to
explore this complex relationship. DA group process
can be a suitable research instrument as it allows
participants to identify the critical dimensions and
clarifying the meaning and subjective interpretation
of each dimension using an interactive group
process. Furthermore the discussion among
participants can give more detailed insight. This
allows to gain heterogeneous inputs which adds to
the quality of the outcomes (Gustafson et al., 1973).
Furthermore, the group session enabled the collect
the data within the short time-frame of half a day. In
this way the time of the participants was limited,
while at the same time allowing the participants to
share their opinions, arguments and evaluations of
the various options and facilitating learning.

During the groups session 7 interorganizational
networks were explored and ranked on the
dimensions of governance and architecture. The
session was facilitated the author and organized as
part of a lecture series. The session was held in
November 2013. During the session the main steps
followed were:

59

Fourth International Symposium on Business Modeling and Software Design

1. Introduction

2. Background: background about architecture and
governance was presented.

3. Assessment: All participants were asked to
outline historical development and to make a
qualitative assessment of their architecture and
governance over time to gain indepth
understanding of the interplay between
governance and architecture.

4. Scoring and positioning. Each of the participants
positioned the results on a whiteboard displaying
the matrix as shown in figure 2.

5. Discussing the results. Participants were asked to
discuss the results.

6. Closing

The use of the architecture and governance
dimensions resulted in the creation of four quadrants
and each quadrant was given a name. The naming
and explanation of the quadrants should help the
session participants to ensure the right positioning.
The matrix as shown in figure 3 was used to map the
developments and results.

1. Ad hoc: both governance and architecture are ill-
developed. There is hardly any structured
information exchanges among the organizations
in the network.

2. Technocratic: In this quadrant architecture is
well-developed and leading, but governance is
not mature. The focus is often on developing the
EA and less on the actual use.

3. Governed: In this quadrant the governance is
mature, whereas architecture is immature. There
is much interaction among organization, but
there is limited agreement about architectural
standards, principles and models.

4. Architecture Governance: In this quadrant both
architecture and governance is well-developed
and can strengthen each other. Often this is
viewed as the normative ideal.

High
Level of .
governance Architecture
governed
governance
ad hoc technocratic
Low
Low High
—_ Level architecture

Figure 3: Intertwinement of governance and architecture.

60

4 CASE STUDY

To understand the dependence between architecture
and governance a complex interorganizational
network was studies that evolved over time. The
SUWI network (Structuur Uitvoerings-organisatie
Werk en Inkomen) is aimed at make sure that there
are no persons without a job or income. For this
purpose information needs to be shared and
information collected by one party should be shared
with the other organizations. In the SUWI network
many organization are participating, including;

e Centrale organisatie Werk en Inkomen (CWI,

www.CWlnet.nl);

e Uitvoeringsinstituut Werknemersverzekeringen
(UWV, www.uwv.nl);

e Sociale Verzekeringsbank (SVB, www.svb.nl);

e Inlichtingenbureau (IB,
www.inlichtingenbureau.nl)

e Bureau Keteninformatisering Werk en Inkomen
(BKWI, www.bkwi.nl).

e Municipal social security departments
e Private Service providers

There are over 400 municipalities who’s social
departments can be involved. In addition other
organizations can be involved responsible for
providing services to citizens. An example are the
reintegration organization that support unemployed
to become employed again.

The goal of this network is twofold, 1) to make
sure that there are no persons without a job and
ensure that unemployed persons will employed soon
and 2) to make sure that every persons has a
minimum amount of income. In addition all the
partners have their own goals which are often
determined by law.

When information about persons is shared with
other organizations in the network this organization
should only obtain the information relevant for them
and privacy regulations should be met. In this
transfer process information can be lost. The transfer
requires information sharing technology and clear
agreements about the meaning of the information
and who is responsible for the information.

The development of the network initially focused
on creating the platform for information sharing.
Nevertheless although the focus was on the
architectural elements, governance played a crucial
role. There were many interactions among the
members. For example the harmonization of terms
to ensure that the same meaning is given requires
extensive governance mechanisms. Although the

The Intertwinement of Architectural Governance and Enterprise IT-Architecture - Enterprise IT-Architecture Viewed as

focus was on making the technology first, this was
always guided by governance mechanisms. As such
the participants in the session had a hard time
positioning the efforts in figure 2. Whereas some
participants ~ were initially = convinced that
architectures was started they started doubting this
after the discussions. At the end there was consensus
that both efforts influenced each other. Although the
driver was technology, both architecture and
governance were necessary to make this work in this
interorganizational network.

When creating the network many architectural
pictures and documents were used as boundary
objects. Nevertheless some of them proved to be not
suitable as boundary objects as 1) they were hard to
understand or interpret by others, 2) provide too
much detail or 3) used terms that did not belong to
the other community. As such dedicated attention
should be given to architecture objects that should
function as boundary objects between the
organizations. They should be plastic enough to
provide interpretive flexibility and adapt to the needs
of each of the organizations involved. This does not
mean that they need to be abstract. They can also be
detailed like the realization of secure data exchange.
This needs to be detailed to ensure that each of the
organization had a shared understanding.
Nevertheless principles need to be abstract to be
reframed in different context and allow to direct the
organizations. The creation of architectural artefact
as boundary objects was found to be crucial for
making architecture work. Furthermore the creation
of methods standardization is crucial for making the
governance work.

CAS recognizes that a system can be guided
using relatively simple principles (Holland, 1996).
The typical example of CAS is a flock of birds in
which individual birds follow the principles of
having a certain distance from each other (the V-
shape) and switch position regularly. In the case
study the recognition that architectural principles are
necessary to accomplish certain benefits might result
in the mandatory use of principles. One person
commented “the development of several systems
without having control and maintenance interface
from the start resulted in the acknowledgement by
management that control and maintenance interface
should be part of the user acceptance test’. This
resulted in the development of a mandatory
principles outlining this.

Organization performance should be viewed as
relatively broad, in which aspects like project
failure, lack of flexibility, agility, interoperability
etc. play a major role. Governance and architecture

Boundary Object from a Complex Adaptive Systems View

can influence these aspects. How governance and
architecture is operated and used is determined by its
organizational members which determines in this
way system level performance.

5 CONCLUSIONS

There is a high interdependency between
governance and enterprise IT-architecture which
makes it complex to analyse. Governance and EA
can strengthen each other, but failure of having
governance in place can result in ineffective EA. EA
and AG are mutual dependent which can be
explained form a Complex Adaptive Systems (CAS)
lens in which feedback loops play a major role.

EA and governance are often said to be
interrelated, but more comprehensive
conceptualizations of how the process unfolds and
contributes to the organization performance is ill-
understood. The complexity originating from the
many persons involved and large and heterogeneous
system landscape, the multilevel nature, non-linear
and emergent behaviour makes it difficult to
conceptualize and understand the relationship
between architecture and governance. We used a
CAS lens to conceptualize these kind of processes
better and how these results in success or failure. By
adoption a CAS lens emergent phenomena,
interdependencies and interactions can be
conceptualized. In this way the understanding of
how individual agents influence system level
becomes clearer and interventions can be developed
to deal with it as was done in this research.

In addition we analysed the boundary spanners
and objects. Architects can act as boundary spanners
and architectural models and documents as boundary
artefact. It was found that architectural pictures and
documents can be used as boundary objects if they
are plastic enough to adapt to the different context
and provide interpretive flexibility. Boundary
objects can be very detailed (i.e. blueprints and
cookbooks describing how something needs to be
done) or abstract (i.e. principles given direction in
different context).

Furthermore, CAS accounts for that architecture
principles and elements and governance mechanisms
might working in a certain situation might not be
suitable for another situation. More research is
necessary in adopting the CAS lens and viewing
architecture as boundary objects.

61

Fourth International Symposium on Business Modeling and Software Design

REFERENCES

Anderson, P. 1999. Complexity theory and organization
science. Organization Science, 10, 216-232.

Casti, J. 1994. Complexification: — Explaining a
Paradoxical World Through the Science of Surprise,
New York, HarperCollins.

Doucet, G., Gotze, J.,, Saha, P. & Bernard, S. 2008.
Coherency Management: Using Enterprise
Architecture for Alignment, Agility, and Assurance.
Journal of Enterprise Architecture, 4, 9-20.

Friedman, R. A. & Podolny, J. 1992. Differentiation of
boundary spanning roles: labor negotiations and
implications for role conflict Administrative Science
Quarterly, 37, 28-47.

Gal, U., Lyytinen, K. & Yoo, Y. 2008. The dynamics of
IT boundary objects, information infrastructures, and
organisational identities: the introduction of 3D
modelling technologies into the architecture,
engineering, and construction industry. European
Journal of Information Systems, 17, 290-304.

Grimsey, D. & Lewis, M. K. 2007. Public Private
Partnerships: The Worldwide Revolution in
Infrastructure Provision and Project Finance,
Cheltenham, UK, Edward Elgar Publishing Limited.

Gustafson, D. H., RK., S, L., D. A. & G.W., W. 1973. A
comparative study of differences in subjective
likelihood estimates made by individuals, interacting
groups, Delphi groups, and nominal groups.
Organizational Behavior and Human Performance, 9,
280-291.

Holland, J. H. 1996. Hidden order. How adaptation
creates complexity, Reading, MA, Addison Wesley.
Hussenot, A. & Missonier, S. 2010. A deeper
understanding of evolution of the role of the object in
organizational process: The concept of “mediation
object”. Journal of Organizational — Change

Management, 23, 269-286.

Janssen, M., Chun, S. A. & Gil-Garcia, J. R. 2009.
Building the next generation of digital government
infrastructures Government Information Quarterly, 26,
233-237.

Janssen, M. & Hjort-Madsen, K. 2007. Analyzing
Enterprise Architecture in National Governments: The
Cases of Denmark and the Netherlands. In:
SPRAGUE, R. (ed.) 40th Annual Hawaii International
Conference on System Sciences (HICSS'07). Big
Island, Hawaii: IEEE.

Levina, N. 2005. Collaborating on Multiparty Information
Systems Development Projects: A Collective
Reflection-in-Action View. Information Systems
Research, 16, 109-130.

Levina, N. & Vaas, E. 2005. The Emergence of Boundary
Spanning Competence in Practice: Implications for
Implementation and Use of Information Systems. MIS
Quarterly, 29, 335-363.

Peterson, R. 2004. Crafting Information Technology
Governance. Information Systems Management, 21, 7-
22.

62

Provan, K. G. & Milward, H. B. 2001. Do Networks
Really Work? A Framework for Evaluating Public-
Sector Organizational Networks. Public
Administration Review, 61, 414-423.

Richardson, L., Jackson, B. M. & Dickson, G. 1990. A
Principle-Based Enterprise Architecture: Lessons
From Texaco and Star Enterprise. MIS Quarterly, 14,
385-403.

Short, J. & Venkatraman, N. 1992. Beyond business
process redesign: redefining Baxter's business
network. Sloan Management Review, 34, 7-21.

Simon, D., Fischbach, K. & Schoder, D. 2013. An
Exploration of Enterprise Architecture Research.
Communications of The Association for Information
Systems, 32, 1-72,.

Singh M. P. 2002. The pragmatic web. [EEE Internet
Computing, 6, 4-5.

Spewak, S. H. 1992. Enterprise architecture planning.
Developing a blueprint for data, applications and
Technology, New York, John Wiley.

Star, S. L. & Griesemer, J. R. 1989. Institutional ecology,
‘translations’ and boundary objects: amateurs and
professionals in Berkeley’s museum of vertebrate
zoology, 1907-1939. Social Studies of Science, 19,
387-420.

Thompson, J. D. 1967. Organizations in Action, New
York, McGraw-Hill.

Weill, P. 2004. Don’t Just Lead, Govern: How best
Performing Organisations Govern IT. MIS Quarterly
Executive, 3, 1-17.

Weill, P. & Ross, J. W. 2005. A matrixed approach to
designing IT governance. MIT Sloan Management
Review, 46, 26-34.

Zachman, J. A. 1987. A Framework for Information
Systems Architecture. /BM Systems Journal, 26, 276-
292.

A Relation-Algebra Language to Specify Declarative Business Rules

Lex Wedemeijer

Department of Computer Science, Open University, The Netherlands, Valkenburgerweg 177, Heerlen, The Netherlands

Keywords:

Abstract:

Lex.Wedemeijer@ou.nl

Declarative Business Rules, Relation Algebra, Modeling Language, Metamodeling, Rule Compliance.

Business rules that apply within a business context must be formulated in a comprehensible way to allow
validation by their stakeholders, but at the same time they must be specified with enough precision to assure
their correct implementation in computer applications. These opposing demands of business rule modeling
are not easily reconciled. Formal rule modeling languages may be exact but they are often lacking in
understandability, whereas controlled natural languages are more easily understood but generally fall short
in exactness. We use Relation Algebra as the foundation to set up a controlled language for declarative
business rules that is compatible with practical demands, such as laid out in the Business Rules Manifesto.
Our version of controlled language comprises just five language statements that are orthogonal by design,
which makes for a language that is suited for use by novice business rule modelers. The language lets users
set up a business vocabulary that stakeholders can understand, and it allows to specify business rules about
the objects in the vocabulary in a comprehensible if-then syntax. Rules expressed in our language are
precise enough to permit the automatic generation of a prototype information system which is guaranteed to
comply with the rules. Stakeholders can explore this prototype to verify the vocabulary, and to check
whether the specified rules are valid and match their original intent of the business context. We show how
we can ascertain correctness of our language and metamodel, by adopting a reflective approach and subject
our context to rule analysis and specification, just like any other business context. It provides us with a
prototype system that lets us explore the rules about rules, and validate the rule compliance.

1 INTRODUCTION

Business rules play an important role in day-to-day
business operations and supportive IT applications.
Declarative rules restrict what states are permitted in
the business, and which operations may be executed
by employees and information systems of that busi-
ness (Hay, Healy 2000).

There is consensus that the business rules should
be validated by stakeholders in the organization to
ensure their overall correctness and coherence (Busi-
ness Rules Manifesto 2003). Therefore, rules must
be expressed in a way that a target business audience
clearly understands. But to use those very rules in
software applications calls for exact specifications
and computer precision. This poses contradictory de-
mands: comprehensibility for lay users, but perfect
exactness for programmers and applications.

The prime deliverable of rule-based design is a
compliant database application. In practice, the
informal rules of business behaviour are rephrased
and transformed in a chain of handovers until their
encapsulation in an enterprise information system

(figure 1). At each point in the chain, requirements
are translated into yet another language, a process
which is prone to misinterpretations, loss of detail,
and other problems, even in the presence of a valida-
ted vocabulary (Bajwa et al., 2011).

informal
description
of business
. behaviou

design computer
artifacts applications

computer-
supported
operations

Figure 1: Chain of handovers of business rules.

To reduce the need for translation, we propose a
simple language founded on proven theory to cover
the major part, if not the entire chain of handovers.

The business rules considered in this paper are
declarative: there is no procedural dependence or
hidden sequencing. The rules are also invariant: they
concern persistent states only, not some transient
situations that exist for just a brief moment in time,

63

Fourth International Symposium on Business Modeling and Software Design

e.g. only while a data transaction lasts. This differs
from IT-approaches like the Event-Condition-Action
(Poulovassilis et al., 2003) paradigm, or
Communicating Sequential Processes (Hoare, 1985;
Wedemeijer, 2012). From a business point of view,
the ECA type of rules have a technical ring, and
their relevance is experienced as vague, difficult to
retrace, and hard to explain (Andreescu, Mircea
2014).

The paper outline is as follows. Section 2 dis-
cusses some contemporary languages for declarative
business rules, and design considerations for our lan-
guage. Section 3 describes the proposed language.
The syntax of each basic statement is depicted as a
railroad diagram, and we explain core ideas. Section
4 puts the language to work, by describing features
of supportive design- or prototype environments.
Such an environment can be regarded as a business
context having its invariant rules captured. In section
5 we pursue this idea by developing a meta-model of
the language. Section 6 presents conclusions.

2 RELATED WORK

Business rule languages must be comprehensible for
business workers on the one hand, and faultlessly
exact for computer applications on the other
(Bjekovic, Proper 2013). Numerous languages to
express declarative business rules exist (Kardasis,
Loucopoulos 2004). Our discussion of languages is
restricted due to lack of space.

2.1 Declarative Rule Languages

On one side of the spectrum of languages to express
business rules are natural and semi-controlled langu-
ages. Prominent Semantics of Business Vocabularies
and Rules (Object Management Group 2008). One
of its derivatives is RuleSpeak, 'a set of guidelines
for expressing business rules in concise, business-
friendly fashion using structured natural language'
(Ross, Lam 2011). Another derivative is Attempto
Controlled English (Fuchs et al., 2008).

These approaches rely on business vocabularies,
also called 'fact models', in order to capture the true
meanings and definitions of business data. Hence,
comprehensibility and business focus is a strong
point. However, controlled languages still permit a
large variety in phrasing, and lack uniformity. As a
result, rules are not always concisely and clearly
expressed, making validation difficult and leaving
room for interpretation, two fatal shortcomings for
IT implementation (Weigand et al., 2011).

64

Other standards based on SBVR are FBM (FBM
Working Group 2011) and Object-Role Modelling
(Halpin, 2011). Both standards depict conceptual
models in the customary way, and then depict the
constraints visually. As a result, the diagrams with
constraints become quite confusing, and they are
barely intelligible for lay users.

A middle field is languages that aim to describe
enterprise architectures, stakeholder concerns, goals
and business rules (Quartel et al., 2009). Generally,
these languages are not geared to capture rules, and
are too high-level to allow validation by business
stakeholders, or implementation in IT-systems.

On the other side of the spectrum are languages
with an IT-provenance, such as UML- and XML-
based languages or DTD's. Many of these languages
are 'rich', meaning that a business feature may be
captured in a variety of ways (Lamrani et al., 2013).
Hence, it requires a thorough knowledge of imple-
mentation details to disclose the business relevance
of an implemented rule (Beckner, 2014). Andreescu
and Mircea (2014) remark on the reluctance to use
OCL in the early design phases, when IT specialists
need to cooperate with business people.

RuleML is an evolving family of XML-based
languages (Boley et al., 2004). Semantic Web Rule
Language, SWRL for short, achieves an expressive
power superior to our language in some areas, e.g. to
specify derivations, numeric and time calculations
(Horrocks et al., 2004). SWRL also includes the
Horn-clause syntax for rules, a strong point that
which we will employ in our language. Nonetheless,
the IT-orientation and notational complexity of
SWRL, and XML-based languages in general, make
them unsuitable for an average business user or
novice designer (Akbari et al., 2103).

We conclude that (controlled) natural languages
may capture business rules in a comprehensible and
validatable manner, but not precise enough for
computer applications. Formal rule modeling
languages or general IT languages may be exact
enough, but they lack in understandability.

2.2 Language Considerations

With the above in mind, our language for business

rules was devised with the intention to:

= ensure comprehensibility for business people by
relying on business vocabulary (terms and
phrases of the business context).

= ensure that business workers can understand and
validate their rules, and so minimize the need for
back-and-forth translation of rules.

= ensure orthogonality of the language, so that

A Relation-Algebra Language to Specify Declarative Business Rules

features are always expressed in just one way,
and so avoid the problems of 'rich' languages.
= ensure exactness of rules, by founding them on

rigorous mathematical theory; we opt for binary
Relation Algebra (Maddux, 2006).

To prevent trivial but cumbersome errors in data
entry, we prefer names and identifiers to be case-
insensitive. Also, leading and trailing spaces should
be avoided as much as possible.

2.3 Way of Working

Rule design may be conducted in a progressive way
of working (figure 2).

informal description
of business behaviour

business
context

analysis- Conceptual DBec AT
and design Model t;{slTess
environment ules

-

test
environment

N

running
business

data
loaded from
the busil

WO(; OW process ;O

deal with violations

compliant
database
application

Figure 2: Way of working in rule-based systems design.

The approach starts at business behaviour, which
in most cases is only informally understood.

In the analysis and design phase, a business
model of concepts and relations is created capturing
the relevant parts of the business vocabulary. And,
very important, the declarative rules are captured.

In the test environment, data for concepts and
relations is loaded incrementally to test whether the
predicted rule violations emerge. Rule enforcements
are specified, determining how workflow processes
should deal with rule violations in practice.

Script:
Name

Statement:

‘ Model-Statement '
' Rule-Statement '
Explain-Statement
Load-Statement "

l ‘ Quoted-string
Enforce-Statement

Figure 3: Railroad diagram for script and statements.

Delimiter H Statement

Delimiter:

3 PROPOSED LANGUAGE

Our language provides five statement types that a
designer may use in the specification of a business
context. A railroad diagram of the overall language
set-up is shown in figure 3.

Statements in a script may appear in arbitrary
order, to suit an incremental, step-by-step, top-down,
big-bang, modular, or any other preferred approach
of the designer. The statements are uniform in make-
up: first a reserved language imperative, identifying
name(s) next, and then the further particulars.

3.1 Model

The model statement defines the concepts and binary
relations that are part of the business vocabulary
(figure 4). It sets up the structure of concepts and
relations that the designer considers to be important.

Model-statement:

=
=

Relation:

»—{ Concept H Name }a— Name W Concept]—-N

Concept: Name:

oYE380

Figure 4: Railroad diagram for the model statement.

Concepts have unique names, enclosed in square
brackets for clarity, and starting with a letter.

Relations are uniquely identified by a colloquial
name to call the relation by, plus the names of its
domain and range concepts. In addition to the
colloquial name for the relation itself, another name
may be provided for the inverse relation, indicated
by the ~ inversion symbol. Uniqueness requirements
for the relation name also apply to the inverse name.

We prefer the infix style of notation for relations.
It enhances readability and prompts designers to
pick self-explanatory relation names. Technically
speaking, prefix or other styles are equivalent.

A script may contain multiple model statements,
so that concepts and relations can be incrementally
introduced. And because concepts are easily dedu-
ced from relation domains and ranges, a designer
may even forego the explicit modelling of concepts.

By definition, it is impossible to violate a model.
All true facts observed in the business context, either
fit perfectly in the structure, or they are irrelevant. If
some business fact is relevant but still cannot be

Fourth International Symposium on Business Modeling and Software Design

expressed as atoms or tuples, then the structure is
wrong: it is an inadequate model of the business
context. Thus, a model may be regarded as a set of
structural rules. As no other rules apply to it, we call
this an Unconstrained Conceptual Model.

3.2 Rule

We are now in a position to specify 'behavioural'
rules that business stakeholders ought to live by.
These rules should always evaluate to being satis-
fied, but in a running business, they may temporarily
be violated. The implication is not, that the model is
wrong. Rather, the business stakeholders should take
action to remedy the violations.

The combination of model and rule statements is
sufficient for business rule analysis and design. The
joint deliverable may be called a Conceptual Model,
and a good designer will make sure that it meets the
usual quality requirements, such as completeness,
and consistency of its rules (Moody, 2005).

To emphasize the behavioural aspect of rules, a
core position is given to the rule keyword 'must' in
the rule statement. The idea, in accordance with the
ideas of RuleSpeak (2014), is to help users grasp the
rule intent: guiding the business behaviour and have
people refrain from violating the rule.

Each rule comes with a unique rule identifier,
starting with a digit 0.9. Other statements can refer
to the rule by way of this identifier, and it also
comes in handy when violations are to be reported.

3.2.1 Simple Rules: Cardinality Constraints

A single relation may already be subject to a simple
rule, i.e. cardinality constraints may apply. For and
understandability, our language provides keywords
to express cardinalities and common combinations.

For instance, the keyword 'function' means that a
relation must be univalent and total. In addition, we
provided keywords for ruletypes of homogeneous
relations. And although simple ruletypes usually
apply to simple relations, a compound expression
may also be subjected to this kind of rule.

Combining disparate cardinalities under one
heading defies the idea of having a unique identifier
for each distinct rule. The designer should decide
whether or not to combine rules, depending on how
the user community understands these rules and
deals with possible violations.

Notice that simple ruletypes are syntactic sugar:
all simple constraints are perfectly expressible in
mathematically equivalent compound rules. We
include the rule keywords in our language for the

66

sake of simplicity. In practice, it makes little differ-
ence: a rule is referenced only through its identifier,
independent of the mathematical formulation.

H
=)
Expression:

T@ =
Expressmn

E Unary- Operator Expression I—/I

xpressmn Binary- Onerator Expression W
\# |-Relation E

Rule-statement:

Rule-id:

Figure 5: Railroad diagram for the rule statement.

3.2.2 Compound Rules: If-then Phrases

The real benefit of Relation Algebra is found in its
ability to formulate compound rules in the concise
yet straightforward way of normalized Horn clause
format (Horrocks et al., 2004):

antecedent = consequent

Both the antecedent and consequent are binary
relations, either a plain relation of the Unconstrained
Conceptual Model or a compound expression, and
must have the same concepts for domain and range.
This format is easily translated to a semi-formal if-
then sentence (1), into which we like to include the
important rule keyword 'must":

IF the antecedent is confirmed,
THEN MUST the consequent be confirmed

)

We define a rule violation as: a pair in the ante-
cedent, but absent from the consequent expression.
With this definition, the text becomes:

IF a pair is present in the antecedent,
THEN MUST the pair be in the consequent

The Horn-clause format easily pronounces as 'if...
then must...", but the mathematical expressions in a
rule may be quite complex, as seen in the railroad
diagram of figure 5. Both expressions in the Horn
clause may be a relation of the Unconstrained
Conceptual Model, or may combine several relations
using unary and binary operations. Special relations
and constants may also be included, as explained
below. It requires skills and business knowledge to
translate the complex expressions into terms that the
user community can understand. Better still is to

A Relation-Algebra Language to Specify Declarative Business Rules

avoid complex expressions altogether, and find easy-
to-explain, natural rule assertions to begin with.

3.2.3 Special Relations and Constants

Complex expressions in rules may call for special
relations. Our language provides a number of them,
such as entire Cartesian Product, the empty relation,
and the identity relation on a concept.

Expressions may also contain constant values or
literals. Such values act as atoms or tuples in the rule
expressions, but they need not be on record as they
do not necessarily represent true business facts.
Constant values in rules may force certain tuples to
be on record. For instance, the rule 'the president of
the USA must be a citizen', implicitly assumes that a
nation named 'USA' is recorded. If we eliminate the
constant by rephrasing the rule to 'the president of a
nation must be a citizen of that nation', then the em-
pty database no longer violates it. In general, an
empty database never violates a rule if no constants
are involved in the rule (Decker, Martinenghi 2006).

3.3 Explain

True business relevance means that each node, edge
and clause in the specifications, can be clearly ex-
plained for, to, or even by the business workers. To
help the audience grasp the detailed meaning and
structure, explanatory texts are helpful (figure 6).

Explain-statement:

» Quoted-string
=

Quoted-string: Spaced-string:

r@- ==l - T
. Spaced-string .
' Spaced-string ']

Figure 6: Railroad diagram for the explain statement.

An explain statement addresses either a concept,
a relation, or a rule, each of which comes with its
unique identifier. The explanatory texts do not alter
the contents of the model or the rules and violations
and therefore any number of explain statements may
be given for a single concept, relation or rule. The
aim is to help users in understanding both the details
and the overall structure of the model.

3.4 Load

An important means to put a model and rules to the
test is by loading data and check for rule violations.
The ability to load data is also useful when a design
is demonstrated to the business stakeholders.

Load-statement:

@ Concept Set-of-atoms

{ Relation % Set-of-tuples I»

Set-of-atoms:

0

Set-of-tuples:

Set-of-atoms

Set-of-atoms

Figure 7: Railroad diagram for the load statement.

The load statement places sets of atoms, delimi-
ted by curly brackets { .. }, into a concept extension,
or sets of tuples in relation extensions (figure 7).

Loading of data is not obligatory, but if data is
loaded, then entity integrity and referential integrity
is required (Date, 1981). At design time however,
there is no need to worry about this, because it can
be automatically ensured at load- and runtime.

3.4.1 Specifying Data

Like concepts, the atoms in our language are self-
identifying: an atom is fully specified by its name,
which is merely a text string, plus (the name of) the
concept it belongs to. We do not distinguish between
atom, atom-name, atom-value, or identity, distinc-
tions that are hard to explain to lay users. Moreover,
the atoms and their distinguishing names, or id's, or
values must be linked tightly. Links that, on a meta-
level, prove to be isomorphisms, or almost so. We
think that such intricacies are better avoided.

Writing lots of data for loading is boring, and
prone to typing errors. Our language provides two
shortcuts. First, several relations may be loaded at
once, provided of course that the domain and range
are identical for all of them. Second, instead of
specifying one tuple at a time, a set of tuples can be
specified in one go, by combining a set of atoms
from the domain with a set of atoms of the range.

3.5 Enforce

Enforcement is how runtime violations of the rules

67

Fourth International Symposium on Business Modeling and Software Design

should be dealt with from the business point of view.
In realistic business environments, enforcement may
range from 'avoid violation at all cost' to 'comply or
explain' or even 'ignore all violations'. From the IT
perspective however, there are just three main
strategies called 'projector’, 'rejector’, and 'producer’
(Dietz, 2008).

Enforce-statement:

report

:
—d
Figure 8: Railroad diagram for the enforce statement.

Our language provides for variants for all three
variants. Figure 8 depicts the railroad diagram for
the enforce statement in our language.

Enforce is not an incremental statement: a rule is
subjected to one enforcement strategy at most, and
specifying multiple enforcements for one rule has no
use. If no enforcement option is specified for a rule,
then the 'report' strategy applies by default.

3.5.1 Report

We call 'report' what the literature is referred to as
'projector'. This strategy for a rule means that after
some edited data is committed, the rule is assessed,
meaning that all violations are 'projected' into a
special database table. Next, that listing is reported
to the stakeholders. Notice that all violations ought
to be reported, not just the new ones caused by the
latest data edit.

Generally speaking, the 'report' strategy is easy
to understand and robust to implement, which is why
it is the safe choice for any business rule. For this
reason too, this strategy is the default at load time.

3.5.2 Reject

The 'reject' type of enforcement strategy means that
the rule must be checked prior to committing a
change of data. If the change would result in a new
violation for this rule, then the change should be
rejected offhand, and the data not recorded.

The assumption underlying reject is that data
violating this particular rule cannot even be valid in
the business context. Rejection may be bothersome
for business workers because this assumption is
sometimes wrong, so that perfectly valid data is
rejected for a bad reason.

There is another loophole: data may actually be

68

in conflict with the rule, but if by coincidence the
violating tuple is already present for another reason,
then the erroneous data can be recorded nonetheless.

3.5.3 Resolve by

We introduce 'resolve' as final enforcement strategy
for rules, referred to in the literature as 'producer’.
The idea here is that sometimes in the business
context, there is only one viable way to resolve a
violation. And if the solution is known, why not let
the computer apply it automatically?

We recall our definition of violation as a pair in
the antecedent expression of a Horn clause, but not
in the consequent. Hence, adding the offending pair
into the consequent is a straightforward solution, and
this is exactly what the enforcement strategy 'resolve
by addition' intends. The strategy called 'resolve by
deletion' takes the opposite tack and bluntly deletes
the pair from the antecedent. As expressions in
general cannot be edited, a necessary restriction is
that the expression being edited must be a relation of
the Unconstrained Conceptual Model.

A data-edit transaction is produced and in fact,
this may result in the violation of some other rule.
The automatic transition may even be rejected by
another rule, or a subsequent transaction may be
produced, and so on, potentially creating deadlocks
or interminable loops. While compliant with the
theory of Relation Algebra, this strategy goes
beyond our context of invariant, i.e. state-oriented
business rules. In defining our language, we did not
investigate these effects nor have we tools for the
rule designer to control them.

4 LANGUAGE ENVIRONMENT

explain

model rule

enforce

prototype
database
application

Figure 9: Contributing to the generated prototype.

The prime deliverable of rule design is a working
database application that assures rule compliancy.
Putting our rule language to work requires a design-
and runtime environment in which all five of our
statements contribute to that deliverable (figure 9).
As we strictly adhered to the sound theory of Rela-

A Relation-Algebra Language to Specify Declarative Business Rules

tion Algebra, the generated prototype is guaranteed
to comply with the invariant rules in the script.

4.1 Design Time Interface

A design time interface should support a designer to
create, expand, refine and correct her script, and also
to save the script to continue work at a later time.

A graphic display of the Unconstrained Concep-
tual Model, with drag-and-drop and rearrange featu-
res to uncluttered the diagram, is a wonderful help in
composing and understanding. Still, it is the model,
the rule statements and explanations that should be
at the core of the design effort, not the diagram.

The rule statement calls for a smart formula
editor, with an option to link each rule expression to
corresponding nodes or edges in the model diagram.
Various flags would also be desirable, such as flags
for faulty expressions, rule inconsistencies, potential
simplifications of rules, or unconstrained relations.

The explain statement can well be supported by
providing text editing functions in a mouse-over of
the diagram.

The load statement needs generous support to let
a designer include a full load of initial data in the
script, and integrity should be taken care of
automatically, at load time at the latest. Copy and
paste of realistic data acquired from the business
arena would be greatly appreciated. Automatic
generation of datasets in compliance or violation of
a specific rule, would also be desirable.

Lastly, no special support appears to be required
for the enforce statement at design time.

4.2 Load Time Interface

At load time, all data in the script should be loaded
into the Unconstrained Conceptual Model. Only the
'report' enforcement strategy is feasible at this time,
to prevent undesired outcomes or even deadlocks
caused by 'reject’ or 'resolve' types of enforcement.

But data integrity must be made to hold. Refe-
rential integrity holds that each tuple refers to atoms
on record in the domain and range, respectively. One
option is to apply 'cascading delete', i.e. ignore all
tuples that refer to a unrecorded atom. The opposite
option is more attractive, i.e. to automatically insert
the domain and range atoms of all tuples. Entity
integrity holds that duplicates of an atom or tuple
already on record, should not be loaded.

Once data is loaded into the Unconstrained
Conceptual Model, only then should the rules be
checked and violations reported. The report should
enable the designer to trace each violation: what rule

is violated, which atoms and tuples play a part.

A smart designer selects her data for loading in
such a way that each violation is clearly understood,
explained, and repaired. If a violation cannot be
understood, then either the loaded atoms and tuples
make no sense in the business, or the rule itself is in
doubt. Or if particular violations can only be
repaired by rigorously deleting data, then apparently
some rules are contradictory. In any case, business
people should be consulted to clarify the issue.

4.3 Runtime Interface

The script captures the rules of the business context,
and a computer interface serves to confront the
business community with their rules. Conveniently,
it makes little difference how a designer organizes
her statements in the script, because the business
users are not exposed to the script directly.

A minimal requirement is a browse-and-explain
interface. This should help users understand their
exact business rules and violations. It ought to depict
uncluttered diagrams of the entire Conceptual Model
or parts thereof. It should display relevant explanati-
ons for all the concepts, relations and rules in the
diagram. Also for each rule a complete list of all
persistent violations must be provided, with
explanations and traces how each violating tuple is
determined from the corresponding Horn-clause
formula. From there, the interface should support
drill-down features to scrutinize partial populations
or even individual instances in the diagrams.

Second, a demonstration interface is appreciated
to emulate a workflow case in a (partial) business
process. A series of predefined datasets is loaded in
sequence, showing the emergence and subsequent
resolution of violations as new data is being entered.

Adjusting rule enforcements on the fly in the
runtime interface is still better. This would allow
experimentation how to deal with rule violations and
to probe the effects on the workflow processing.

The real benefit of our language is to generate a
rule-compliant runtime prototype application with
full data edit capabilities. Business people can then
put that prototype to the question by entering all
conceivable kinds of business data, view the
responses by the system, and come to understand the
workflow processes for dealing with the violations
of their business rules.

S LANGUAGE METAMODEL

So far, we discussed the modelling of an arbitrary

69

Fourth International Symposium on Business Modeling and Software Design

business context, its vocabulary and rules. In this
section, we change the perspective and select 'rule
design' for our business context.

5.1 Metamodel

What is the business vocabulary of design? What are
its rules? If we could specify this special context in
perfect detail, and if a compliant tool environment
would be available, then we could use these... to
generate the prototype system for rules design, in a
truly reflective approach.

Metamodel

explain

Explanation

\

[Concept Relation Expression Cardi- | | Homog.
nality -type
Colloquial “Rule
model name rule
I J

L

Atom | Tuple Enforce |
! -type
Violation |
IoadL

|
hiwily

enforce

Figure 10: Metamodel of the language (conjectured).

The idea, although not new (Schén, 1992), is still
worthwhile to pursue. Having outlined the relevant
business context in section 3, we present a conjectu-
red metamodel in figure 10. In the diagram, we use a
freehand style, and we omitted the meta-relation
names. Interestingly, the statements of our language
can be associated with five distinct areas in the
metamodel.

Evidently, the metamodel comes with its own set
of rules constraints on the metamodel concepts,
associations, and contents. Without being exhaustive
we outline some major rules per area.

5.2 Meta-rules and Enforcement

Entity integrity is an intrinsic demand of relation
algebra, and it applies in this metamodel as well.
Duplicate atoms of a concept or duplicate tuples in a
metamodel association are unacceptable at any time,
This integrity demand can be enforced as 'reject’, in
other words: duplicate entries are simply ignored.

In the 'model' area, it is compulsory that each
relation has exactly one domain concept, one range
concept. Referential integrity proclaims that both
concepts must be present in the extension of the
Concept concept. This rule is easily enforced as

70

'resolve by addition', meaning that missing concept
names are automatically inserted. Moreover, the
domain concept, range concept, and colloquial name
together must uniquely identify the relation. And if a
relation's inverse name is given, then it must adhere
to the same uniqueness demand.

In the 'rule' area, a simple rule is associated with
one expression and one (or more) cardinality- or
homogeneous-ruletype. The compound rules, i.e.
those in Horn clause format, are associated with both
an antecedent and a consequent expression that must
have the same domain and range concepts.
Regarding the 'expression’ concept, it must first be
noticed that any particular expression may well be
associated with several rules. Second, an expression
can involve many relations, or concepts, or even
constants, which is why we depict an non-specific
line from 'expression' to the 'model' area in the
metamodel diagram. Finally, it must be realized that
expressions in general will constitute derived
relations. That is, except in the special case where
the expression equals a relation defined in the
Unconstrained Conceptual Model.

In the 'explain' area, explanatory texts are
associated to concepts, relations and rules, but no
particular restrictions apply. In the 'enforce' area of
the metamodel, only a uniqueness restriction applies.

5.3 Example of a Meta-rule

In the 'load' area, referential integrity must again be
made to hold. As an example how analysis may be
conducted and how our language supports the rule
designer in her analysis, let us show how to capture
referential integrity in a rule enforcement.
Referential integrity holds that for any tuple in
any relation, both of its atoms must be on record:

IF the tuple T has the domain atom A,
THEN MUST that tuple T is contained-in
some relation R which has domain some
concept C which contains that atom A.

This controlled-language sentence translates to a
rule in our language as an Horn-clause implication,
with symbol ; indicating composition of relations:

rule 2-referential-integrity-domain as
[Tuple] has-domain [Atom] must imply
[Tuple] contained-in [Relation] 2)
; [Relation] has-domain [Concept]
; [Concept] ~contained-in [Atom]

The antecedent expression is a relation in the
Unconstrained Conceptual Metamodel. Hence, this
rule assertion (2) permits us to impose the 'resolve
by deletion' enforcement strategy: any tuple refer-

A Relation-Algebra Language to Specify Declarative Business Rules

ring to an unrecorded atom is immediately deleted.
This strategy is known as 'cascading delete' in
relational database technology. A similar meta-rule
will do for the atoms in the range of the relation.

The rule of integrity must hold at runtime, but
still its enforcement strategy can be made to vary. A
'reject’ or 'report' strategy may be better in a running
business environment. Moreover, at load time the
'resolve by addition' strategy is to be preferred.

This illustrates how there are unresolved issues
in the analysis and design of the metamodel calling
for further research. Another issue is how to deal
with constant values in rule expressions.

6 CONCLUSIONS

We proposed a rule language to capture and express
declarative business rules. The language, combining
business vocabulary with precise mathematical
features, is comprehensible for business users, and
precise enough to generate rule-compliant IT appli-
cations. We outlined how the language may be
employed in design- and runtime interfaces.

6.1 Expressive Power of the Language

We claim that the language has adequate expressive
power for rule design and analysis.

Following the ideas of SBVR, our language is
founded on business vocabulary, compelling the
designer to use the plain business phrases for the
relevant terms and facts, a major strength of our
language. Declarative, invariant business rules are
described in a comprehensible if-then syntax. In our
experience, this is a great help for people reading a
script. In particular, the 'must' keyword provides an
immediate clue of what a rule intends to say, even
when complicated expressions are involved.

Our language has a clear, uniform makeup. This,
and the simple naming regime make for easy-to-read
scripts that are straightforward to interpret by
business people, even without supportive I1T-tools.
Each line in a script starts with an imperative
keyword that clearly indicates the focus of that line,
underpinning the orthogonality of our language. The
reserved keywords of our language are concise and
learnable, appealing for both skilled business
workers and novice rule designers.

Statements of our language are orthogonal by
design. Each statement addresses a single aspect of
the business context. The language statements are
loosely coupled, but as some statements necessarily
depend upon previous ones, complete independence

is not possible.

No restrictions apply to the order or sequence of
statements. The designer may first specify all
aspects of one business feature, or start a model with
a few rules in one section of the script and add a
section with load statements later, etc. Therefore, no
particular design approach is forced upon the
designer. Having said that, a strong point of our
language is that it does force a designer to consider
all business features of the relevant rules, and to
capture its aspects in distinct statements. For
business users, it makes little difference how the
statements in the script are organized, because in
theory, users do not browse the script but use a
dedicated interface to explore the rule-based design.
In practice however, users will probably read it, and
even begin to add and amend the script.

Our statements are devoid of typical IT jargon
such as primary-keys and attributes, functional
dependencies, cascading deletes, etc. Imperative
ECA-type rules cannot be formulated in our
language, with one exception. The enforce statement
variant called 'resolve' does initiate data editing
operations in response to a rule violation. This is a
digression from the strictly declarative and invariant
nature of our language, the consequences of which
need to be further researched.

In our opinion, rule design for a business context
is a superior approach than the dual approach of
creating on the one hand an implementation data
model with objects, entities, keys, and an activity
model with data transitions and processing features
on the other. Business stakeholders have little
affinity with such refined IT-models, and lack the
ability to validate the correct implementation in
computer applications.

6.2 Language Extensions

Several extensions to the language may be
considered to enhance usability for stakeholders and
compliancy of the implementations. Of course,
expressive power and understandability for business
users should not be affected.

Support for specialization/generalization relati-
ons among concepts is one possible extension. This
is somewhat problematic for Relation Algebra
theory because an atom might belong to more than
one concept for some time, or even switch over
time: a person is student at one time, and teacher at
another. Specialization/generalization is relatively
unimportant in business practice, where models
often do not need it or can use a work-around.

Better support for the 'resolve' enforcement

71

Fourth International Symposium on Business Modeling and Software Design

strategy is needed. Fundamental research is called
for to understand the coordination of rules, and to
prevent contradictory enforcement strategies.

Support for the Role-based Access standard
(Edward et al., 2011) is also suggested. Instances of
a Role concept should be assigned the right to access
all contents of certain concepts and relations in the
Unconstrained Conceptual Model. It calls for a mix
of model and metamodel capabilities, thus extending
the ideas exposed in section 5.

A serious shortcoming of Relation Algebra is
that it lacks arithmetic and temporal capabilities: it
cannot express calculations such as 'add 18% VAT
or comparisons like 'if born before 1980'. Support
for this kind of rules will greatly enhance usability,
provided that the orthogonality of the language and
most importantly, the clear and uniform expression
of declarative rules in if-then syntax is safeguarded.

6.3 Future Research

We indicate some areas of ongoing research that
may improve the applicability of our approach,
methods, and tools for business rules design.

Currently, texts available for explanations in the
user interface are only static. Ongoing research aims
to determine what instructions or explanations in
which interfaces are most helpful to achieve high-
quality designs (Michels, 2011).

Integration of our language with the typical IT-
domain of Semantic Web Rule Language is being
researched (Grosof, 2013). The aim is to improve
the expressive power without compromising
orthogonality of the language and comprehensibility
of the if-then syntax of rules.

Interface design is an ongoing area of research.
In this paper, we proposed to compose and then
compile scripts. But instead of compiling, an inter-
pretative way of working might provide better
support for the designer and business stakeholders.

Research is being conducted to develop the
reflective meta-modelling approach, its vocabulary
and the rules of rule design. The idea is to build a
generator from this; a generator that is capable of
converting any rule-based design into a fully
functional and compliant prototype application.

The vision is that in the future, stakeholders may
formulate and validate their own business rules, and
do so in a language with enough precision to enable
a straightforward implementation in computer appli-
cations, without the intervention of IT specialists.

72

REFERENCES

Akbari 1., Yan B.. Visualizing SWRL Rules. At ceur-
Ws.org

Andreescu A., Mircea M., 2014. Issues and Challenges of
Business Rules Modeling in Software Systems for
Business Management. Informatica Economica 18(1)

Bajwa L.S., Lee M.G., Bordbar B., 2011. SBVR Business
Rules Generation from Natural Language
Specification. AAAIl Spring Symposium: Al for
Business Agility

Beckner M., 2014. Custom Business Rules. BizTalk 2013
EDI for Health Care, Apress. p.105-116

Bjekovic M., Proper H.A., 2013. Challenges of Modelling
Landscapes. BMSD — Business Modeling and
Software Design, 3rd Int. Symposium, p.11-22.

Boley H., Paschke A. et al, 2010. RuleML 1.0:
overarching specification of web rules. LNCS 6403(4)
p.162-178

Business Rules Manifesto 2003. Edited RG Ross. At
www.businessrulesgroup.org.

Date C., 1981. Referential integrity. VLDB.

Decker H., Martinenghi D., 2006. A relaxed approach to
integrity and inconsistency in databases. Logic for
Programming, Al, and Reasoning, Springer.

Dietz J.L.G., 2008. On the Nature of Business Rules.
Advances in Enterprise Engineering. Springer. 10. p.1-
15.

Edward J.C., Timothy R., Rick K., 2011. Role
Engineering: Methods and Standards. 1T Professional.
13: p.54-57.

FBM Working Group, 2011. Fact Based Modelling. At
www.factbasedmodeling.eu/Data/sites/1/media/FBM1
002WDO06.pdf.

Fuchs N.E., Kaljurand K., Kuhn T., 2008. Attempto
Controlled English for knowledge representation.
Reasoning Web, Springer p.104-124

Grosof B., Kifer M., 2013. Rulelog: Syntax and Semantics.
doi=10.1.1.359.9882

Halpin T., 2011. Fact-Orientation and Conceptual Logic.
15th IEEE International on Enterprise Distributed
Object Computing Conference p.14-19

Hay D., Healy K.A., 2000. Defining Business Rules ~What
Are They Really? At www.businessrulesgroup.org/
first paper/BRG-whatisBR_3ed.pdf.

Hoare CAR, 1985. Communicating Sequential Processes.
Prentice-hall Englewood Cliffs

Horrocks 1., Patel-Schneider P.F., et al., 2004. SWRL: A
semantic web rule language combining OWL and
RuleML. W3C Member submission

Kardasis P., Loucopoulos P., 2004. Expressing and
organising business rules. Information and Software
Technology 46(11) p.701-718

Lamrani M., El Amrani Y., Ettouhami A., 2013. On
Formalizing Predefined OCL Properties. International
Journal of Computer, Information Science and
Engineering 7(1)

Maddux R.D., 2006. Relation algebras. Studies in Logic
and the Foundations of Mathematics. Elsevier. Vol
150. p. 289-525.

A Relation-Algebra Language to Specify Declarative Business Rules

Michels G. et al.,, 2011. Ampersand. Relational and
Algebraic Methods in Computer Science. Eds H. de
Swart. Springer 6663. p.280-293.

Moody D 2005. Theoretical and practical issues in
evaluating the quality of conceptual models. Data &
Knowledge Engineering 55(3) p.243-276

Object Management Group, 2008. SBVR: Semantics of
Business Vocabulary and Business Rules, Version 1.0.
At doc.omg.org/formal/08-01-02.pdf.

Poulovassilis A., Papamarkos G., Wood P.T., 2006. Event-
condition-action rule languages for the semantic web.
EDBT 2006, Springer. p.855-864

Quartel D., Engelsman W., et al. 2009. A Goal-oriented
requirements modelling language for enterprise archi-
tecture. Enterprise Distributed Object Computing.

Ross R.G.,, Lam G.S.W., 2011. Building Business
Solutions: Business Analysis with Business Rules.
Business Rules Solutions LLC

RuleSpeak, 2014. RuleSpeak Sentence Forms, Specifying
Natural-Language Business Rules. At rulespeak.com.

Schon D.A., 1992. Designing as reflective conversation
with the materials of a design situation. Knowledge-
Based Systems 5(1) p.3-14.

Wedemeijer L., 2012. A comparison of Two Business
Rules Engineering Approaches. BMSD — Business
Modeling and Software Design, 2nd Int. Symposium,
p.113-121.

Weigand H., van den Heuvel W.J., Hiel M., 2011.
Business policy compliance in service-oriented
systems. Information Systems 36(4) p.791-807.

73

Modelling Capability and Affordance as Properties of
Human/Machine Resource Systems

Vaughan Michell ' and Ella Roubtsova >
!Informatics Research Centre, Henley Business School, University of Reading, U.K.
2Open University of the Netherlands, Heerlen, the Netherlands
v.a.michell@reading.ac.uk, Ella.Routsova@ou.nl

Keywords: Capability, Affordance, CPN, Critical Affordance Factor, Affordance Mechanism, Affordance Path,
Affordance Chain.

Abstract: Understanding how and why the capability of one set of business resources, its structural arrangements and
mechanisms compared to another works can provide competitive advantage in terms of new business
processes and product and service development. However, most business models of capability are
descriptive and lack formal modelling language to qualitatively and quantifiably compare capabilities,
Gibson’s theory of affordance, the potential for action, provides a formal basis for a more robust and
quantitative model, but most formal affordance models are complex and abstract and lack support for real-
world applications. We aim to understand the ‘how’ and ‘why’ of business capability, by developing a
quantitative and qualitative model that underpins earlier work on Capability-Affordance Modelling — CAM.
This paper integrates an affordance based capability model and the formalism of Coloured Petri Nets to
develop a simulation model. Using the model, we show how capability depends on the space time path of
interacting resources, the mechanism of transition and specific critical affordance factors relating to the
values of the variables for resources, people and physical objects. We show how the model can identify the
capabilities of resources to enable the capability to inject a drug and anaesthetise a patient.

1 INTRODUCTION to meet a specific capability goal. Such a model

enables comparison/selection of the best system of

Capability is complex, with wide variations in resources for a specific task (Michell, 2012). It also

meaning and evaluation. Capability can refer to the a{ds gr}derstandlqg the resource properties and
human action ability to do something, (Prahalad and dispositions ?equlred for a capab;l1§y-affordgnce
Hamel, 1990) (Gallouj and Weinstein, 1997). syste?m to achieve a goal. The paper is in 6 s§c.t10ns.
Capability also refers to an object’s abilities Section 2 Introduces affordance and effectivity to

(Beimborn et al, 2005) and the ability of groups of formalise the capability model. Section 3 reviews
resources to perform a task (Grant, 1991) via a formal affordance models and their shortcomings in

process (Makadok, 2001). Capability relates both to relation to capability affordance model}ipg. Sectio.n
tangible visible transformations, (eg manufacturing 4 develops a proposed model for capability analysis
an object) and intangible transformations, eg using CPN. Section 5 prqv1des an example
teaching, where information is transferred and tacit application of the model. Section 6/7 dlscus§es the
knowledge is created (Michell, 2013). The ability to use and benefits of the model and our conclusions.
transform resources is the basis of business

competitive advantage, where the product resources

have greater monetary value than the input resources

and cost of work done.

1.1 Paper Objectives and Layout

Our focus is: modelling the capability of a system of
business resources to identify how and why it is able

74

Modelling Capability and Affordance as Properties of Human/Machine Resource Systems

1.2 Definitions

Tablel: Definitions.

Environment E Abusiness environment E comprises a set of {resources Ri}. The set
of resources {Ri} have perceivable features whose value at any point
is called a disposition

Agent An agent resource is a resource object that can perceive its own
environment through sensors and acts on the environment
according to their self-motivations through effectors. (eg human or
autonomous machine)

Active/Passive
Resources

Active resources ega nurse, are capable of exerting a change of
state on other object resources in a transformation (note driving
resources must be active resources) and have a disposition q.
Passive resources require other agents to realise their capability ie
they areinert and not capable of their own motion or change of
state and have a disposition p (eg a syringe).

Action An action is a discrete physical transformation event between
active and passive resources that can change the state of a system
of resources in an environment to a desired goal state G.

1.3 Capability

A Capability Cv results from transformation
interactions between two or more resources that
achieve a business goal, typically to increase the
business value of the transformed resources with
respect to a business client. Business capability is
the potential for action to achieve a goal G via an
action/series of actions in a process P resulting from
the interaction of 2 or more resources, in a
transformation that produces business value for a
customer. (Michell, 2011). For example, resources
RI and R2 in state s/ and s2 interact in the
transformation and produce a new state of the
system which matches the goal state requirements G
and in which R//R2 may be different. The resources
may be combined into a third resource (an input
resource is consumed/combined) or R/ and R2
remain, but the physical states or R/ and R2 are
changed. Capability represents the potential of a
system of input resources being able to effect a
transformation to meet a goal state G and a
corresponding system of output resources. For
example, a laboratory technician mixing two drugs
with a goal to form a new drug, or two doctors
discussing a diagnosis. In both cases energy has
been expended and a physical state change has
occurred. In case /, two drugs have been mixed to
create a different drug R3, but R/ the drug mixer
remains, but in a different state — having the
transformation experience. In case 2 information has
been passed between clinicians altering their states,
i.e. perceptions and memory (biochemistry/ memory
state change) R/ to RI’ and R2 to R2’). Both
transformations add ‘value’ to the process; a new
higher value drug is formed or a patient diagnosis is
understood. For the transformation to occur at least
one resource must be ‘active’ and capable of
exerting forces and energy via some form of

‘mechanism’ to transform the other resource. It may
be a human or autonomous machine. Other
resources may be passive, e.g. drugs, materials etc or
also active — another agent or machine. We seek to
identify what are the properties of the interacting
resources that enable this capability.

Physical State 2 (Goal)
Business Benefit Value V' (E£££ > V)

Physical State 1
Business Benefit Value V (££)

Resource

R1"
Resource

R1

Activity
- (resource
transformation
Resource action)
R2 etc

Resource
R’ etc

Input Resources Output Resources

Resource Interaction?
Resource Properties?

Capability Cv = f (resources, process of interaction)

Figure 1: High Level Capability Model.

2 AFFORDANCE / EFFECTIVITY

2.1 Affordance as Environment Ability

Gibson (Gibson, 1979) defined affordance as’ the
‘property that the environment or physical system
offered the animal to enable a possible useful
transformation for the benefit of the animal’
(Greeno, 1994) Gibson saw affordances as object
properties that could be perceived as well as intrinsic
properties of the way the object was — its
disposition. Affordance represents opportunity for
potential action by— visualising what an object can
do. Affordance also represents the interaction
relationship between the animal and its environment,
Gibson’s ecological approach identifies action as a
result of what the animal or agent can do.
Affordances refer to descriptions of (verb-noun)
object abilities such as a road is ‘walkonable’ or the
‘cup affords drinking’ (Gibson, 1979) indicating that
the structure/disposition of a road or cup enables it
to be walked on or drunk from. Affordance is the
‘relational’ property of the agent environment
system that provides the potential for interaction and
transformation. It focuses on the possibilities of how
the object could be used by the animal or person.
However, the animal must also have an ability to use
the object and have the correct disposition of
properties; otherwise no useful interaction can take
place.

75

Fourth International Symposium on Business Modeling and Software Design

2.2 Effectivity as Animal Capability

Shaw (Greeno, 1994) identified that environment
ability or disposition, must be complimentary to the
animal’s disposition and ability. Shaw defined this
ability of the animal to compliment the affordance
properties of the object as ‘effectivity’ ie the
‘capability of the animal’ to use the object in a
transformation. Wells (Lenarcic, 2007) suggests
effectivity relates to ‘the functional state of the
animal’ and its possible movements. Hence an
effectivity; ‘can walk’, refers to the human ability to
meet the goal of walking (Kim et al, 2010). We can
think of effectivity as the driving agent ability or the
human potential functional characteristics and
features that enable them to effect a transformation.

|

AFFORDANCE EFFECTIVITY
(Object capability) (Driving Agent capability)

Juxtaposition Rules ‘

Object Disposition p e Animal Disposition q
+ Hand fits around
syringe
{hand size > barrel) + Handfinger location (grasp)
+ Hand in contact with + Finger forces (fh,fsp)
barrel + Size of gapbetween fingers
+ perception and cognition
MECHANISM * Knowledge
+ Force balance fs<fh
<fc

Disposition of object variables Disposition of animal variables

+ Slip force s, crush force fc
+ Smoothness of surface

. Rigidity

« Size/volume of syringe

«+ scale

Figure 2: Affordance-Effectivity of ‘Grasp’.

2.3 The Affordance-effectivity Dual

The disposition of the animal, its effectivity, must
compliment the disposition of the object; its
affordance, in order for an interaction or
transformation to take place. The term affordance-
effectivity dual refers to the complement and one
cannot exist without the other (Ortmann and Kuhn,
2010). For example to hold an object, such as
syringe, a person’s hands must fit around the object
and the fingers must be in a position to prevent it
moving and slipping by applying forces via the
fingers, sufficient to lift and hold, but not to crush
the object. These are properties of the persons’
effectivity in grasping the object. For the object to
be held in a hand it must fit inside the hand (volume
property), must not be too heavy or slippery, It must
also have places that the fingers can grip on to, —
properties of the object’s affordance. The
affordance-effectivity dual refers to the capability of
a driving agent to configure (dispose) itself to
complement an object’s configuration (disposition)

76

to achieve a transformation. The configuration of the
agent refers to finger and force location, magnitude,
size of hand etc. The configuration of the object
refers to its size, weight, slipperiness, functions and
features etc. The disposition is a specific set of
values of the configuration of object/agent at the
point of interaction. A mathematical model is
needed to enable quantitative and qualitative
definitions for comparison and use of capabilities
and their dispositions.

The next section briefly describes mathematical
models of affordance and effectivity and their
limitations that motivate this paper.

3 AFFORDANCE MODELS

3.1 Turvey et al.

Turvey modelled possible actions, or affordance-
effectivity opportunities, as ‘prospective controls’, to
refer to an animal perceiving whether an action is
possible (its capability) and its control of the
planned action to meet the goal of using the object.
Turvey’s affordance model related animal properties
Z and properties of other entities X in an
environment (Turvey, 1992). The specific animal, Z
disposition or arrangement ¢ enables it to join to X,
which a complimentary disposition p. Turvey has
defined the juxtaposition function ;j as the subset of
all the possible dispositions X and Z possess that
make the interaction Wpq possible. So p (the object
disposition) is ‘said to be an affordance a thing in
the environment X’ and ‘q is the complementary
disposition of the animal Z’. At the point of
interaction the animal-environment interface possess
an interaction property », which is a property of Wpq
alone.

Wpq = j(Xp,Zq) (1)

Stoffregen (Stoffregen, 2003) developed the model
and identified the need for spatio-temporal contact
for affordance to be possible (Lenarcic, 2011). This
highlights the need for a space-time path to exist
between the interacting agent-object resources that
form the basis of our model. Warren and others
(Mark, 1987) identified that the geometry of the
interacting objects is important in affordance, eg the
climb-ability of stairs depended on the ratio of riser
height to leg length (Warren, 1984). This suggested
classifications of affordance by a dimensionless
ratio. However, not all affordances can be reduced to
one ratio as Mantel et al (Mantel et al, 2012)
observed in their study of action modes, their

Modelling Capability and Affordance as Properties of Human/Machine Resource Systems

boundaries and degrees of freedom of interaction.
This highlights the need to consider a wider set of
critical factors that we refer to in our model.
Steedman (Steedman, 2002) used linear dynamic
event calculus to identify all the possible potential
action paths. However, it does not meet our need for
modelling the mechanism of action paths to a
specific goal. Brooks (Brooks, 1991) Sahin (Sahin
2007) and others have used affordance extensively
to develop ecological behaviour based control in
robotics, but this is out of scope of our work, which
is focused on human-device work interactions.

3.2 Lenarcic - Situation Theory

Lenarcic combined Barwise’ situation theory that
models the semantics of situations (individuals,
information, time, place) (Barwise and Perry 1980),
with Gibson's and Turvey’s affordance propositions.
Lenarcic’s situation theory model relates affordances
of aset A of objects in the logic (Lenarcic, 2011):

A = {Aatom, Aset, Astate, Asit, Aaff, Aind } 2)

Aatom 1is a set of relevant facts, eg nurse, grasp,
hold, syringe etc. Aset is the set of objects. Astate is
a set of assertions {w} that relates individual people
and objects as truth assertions w = {r, t]...tn, E} eg
<<in, nurse, room, 1>>, or ‘drug is in the syringe’:
<<in, drug, syringe, 1>>. Asit, situations, are sets of
relationships between states {wi,...,wn}. Aaffis a set
of affordances as a tuple {®, s, i}, @ refers is the
action relating to the affordance, s refers to the
situation conditions, i is the individual capable of
affordance, eg @1 <<inmject, injection situation,
nurse>> refers to the agent driving the affordance,
the action involved and the state conditions. Aind
are individuals with their; name, abilities or possible
actions eg inject, grasp and their niche or specific
action groups (Lenarcic, 2011). An ‘enacting
function’ representing the juxtaposition function,
for the affordance to be possible. Lenarcic’s model
defines a comprehensive algebra for affordances and
situations and their semantic relationships. However,
the model is complex and unwieldy for more than a
few interactions. It is mainly qualitative and hence
difficult to compare capabilities or the mechanism of
their interaction.

3.3 Affordance Model Developments

Kim et al (Kim et al., 2008) models affordance using
situation theory and finite state automata (FSA)
models at different levels of detail called grains. A
high level grain model represents a plan of action or

process and an atomic model of interaction that
provides a level of detail within the process that
relates to the CAM model. They define a 12 tuple
model for Matom:

M = ({X,Z, W}, {P,Q,PA},Pr,j, mta,int, tint) (3)
Where the environment is X and human agent Z and
W the animal environment system (AES) (Lenarcic,
2011)]. P is the set of affordances, Q the set of
effectivities and PA the set of possible actions that
can take place. Kim et al include Pr a perceptual
predicate function to account for the fact that
affordance must be seen and understood in order to
use them. Other variables relate to Turvey’s
juxtaposition function J (the function combining
affordance and effectivity) and possible action
generation function pi and the goal or target action
ta. The tuple concludes with time function for the
process level (delta) and the atomic level timing of
the affordance-effectivity interaction. Kim et al
provide useful examples of the application of the
model to a coin in a slot machine and catching a
ball. LTL enables notional separation of affordance
p and affectivity g (Lenarcic, 2011). However,
Kim’s 12 sets of variables make it unwieldy in
modelling situations where we wish to compare
affordances at a higher level of capability, ie several
actions. Also it is not easy to model and specify p
and ¢ explicitly and intuitively, partly because p and
q are related by the juxtaposition function J which is
not easily elaborated.

3.4 The Capability-affordance Model

Our model identifies capability as a property of any
resource combination animal-animal animal-
machine, machine-machine (Michell, 2011). This
enables both business capability to be modelled as
well as the capability of interacting resources
without human intervention eg chemical reactions
(necessary as part of industrial processes).
Capability requires affordance-effectivity
interactions to take place. We take a Gibsonian
stance, but unlike Gibson’s pure affordance, which
relates to possibilities of any resource interactions
happening, we are concerned with how and why
useful business interactions can happen. Hence goals
will be specific to those adding value. Our focus is
on determining the conditions and resource
specifications for which a specific capability is
possible. We illustrate this with the example
‘injecting a drug’ in a clinical process. Using Gibson
and Turvey, we decomposed the affordance-
effectivity disposition or possibility for action
(Lenarcic, 2011) into (i) a space-time or path

77

Fourth International Symposium on Business Modeling and Software Design

disposition and (i) a mechanism disposition
(Michell, 2012). At the point of transition Turvey’s
juxtaposition function J must be represented by both
a path and a mechanism, both meet critical
affordance factor values that make the state
transition possible. The capability of a system of
agents and objects is the sum of all the affordance-
effectivity interactions within the system. This is
equivalent to W, the AES- animal in environment
system in Kim (Kim et al., 2008). The affordance-
effectivity interactions are part of a process where
paths represent the what Kim calls ‘high grain’
interactions and affordance chains represent parts of
agents or objects eg syringe components such as the
plunger and the barrel interacting.

3.4.1 Affordance Path

The affordance path relates to the space-time
affordance-effectivity dual interaction requirements
that if the agent and object don’t spatially come into
contact or a region of influence with each other,
affordance won’t occur (Lenarcic, 2011). Hence part
of the animal disposition ¢ and the object disposition
p conditions must relate to space-time rules
regarding the contact/interaction geometry between
object and animal. In the syringe example, the
syringe position and orientation (p variables) must
match the hand/finger positions (g variables). If the
structural spatial arrangement or disposition of the
interacting resources do not complement each other,
the interaction and capability will not be present, ie
if the syringe is too big to fit in the hand or lacks
grip and leverage points.

An affordance path AP is the set of possible
space-time movement and geometric configuration
conditions that must exist to enable the affordance
mechanisms to act and execute the capability.
(adapted from Michell, 2012) At the interaction
point between resources, the space time path of
animal and object must be the same. Movement and
dynamics of the agent in its previous states must be
such that it leads to the special agent spatial
disposition ¢ which matches the special spatial
disposition of the object p at time ¢ of
transformation. This becomes a more difficult
problem of kinematics when both animal and object
are moving and the geometry changes, as in Kim’s
ball catching example (Kim et al., 2010).

3.4.2 Affordance Mechanism
Having the right spatial disposition alone is not

enough. There must be an energy and interaction
mechanism to get the resources into contact and to

78

enable the desired cause and effect. For the syringe
to be gripped, the hand must exert force on it
through the fingers to prevent slipping and crushing.
The use of forces in this case is the ‘mechanism’ or
what enables the transformation — to hold the
syringe. The affordance transformation mechanism
refers to the laws of nature that must hold for the
cause and effect interaction between the resources to
take place. The most common mechanism in
substantive interactions is force, supplied by an
animal or machine agent. The affordance mechanism
is the cause and effect transformation at the
interface between the two or more interacting
resources and its properties that enable the
transformation (adapted from Michell 2013).
Mechanism refers to the behaviour and
properties of the energy transfer that drives the
transformation eg human energy, chemical,
electrical etc. This fits with Gibson’s ecological
approach. Other mechanisms exist. Chemical
mechanisms, enable a substance eg sugar to
dissolve in a fluid, if the sugar has appropriate
properties ie sufficient surface area and if the sugar’s
bonds can be broken by a fluid such as water. This
represents an object-object transformation between
the water and sugar. The mechanism of electric
induction depends on the properties of a wire and
electromagnetic field and enables an electric current
to appear in a wire. This mechanism is necessary for
affordance and capability of an electric motor ie a
motor affords rotation. Without it the motor has no
capability or affordance. Mechanisms are not
confined to substantive actions, but include human
cognition sense making — or semiosis (Stamper and
Liu 1994). The mechanism for the nurse holding the
syringe includes the need to perceive the situation
(position of the syringe) and the affordance of the
object (can the syringe be held — how big/heavy is it,
will it fit?). Holding the syringe ‘to give an
injection’ requires different knowledge and skill
(repeated affordance experience) than a simple grasp
(Andre, 2011) to actualise the affordance—effectivity
action of ‘inject’. Hence mechanisms should ideally
include cognitive resources in terms of ‘know what,
how and why’ that enable the agent to make
intelligent decisions to enable the resources to
interact. The complete capability model should
include perception, cognitive behaviours (Michell,
2013) and capability mechanisms that will affect
whether the animal is able to a) perceive and b)
understand and bring the resources appropriately
together with the right disposition to enable the path
and mechanism to effect transformation. For space
reasons we only include a brief perception example.

Modelling Capability and Affordance as Properties of Human/Machine Resource Systems

3.4.3 Ciritical Affordance Factor

In both path and mechanism there is a linked set of
critical values of the variables relating to the
functions that define the path and mechanism. that
enable interaction. These critical affordance values
effectively encompass any critical ratios (such as
those defined by Warren, 1984) and other factor
values that will affect the possibility of the
transformation occurring. We define the factors that
have critical values attached to them as critical
affordance factors, CAF (Michell, 2012). CAFs refer
to the values and/or range of values for the
disposition of both object and agent to interact ie
values of p and ¢ in Turvey’s notation. So in the
syringe example they might refer to the range of
force (ie critical mechanism values) values to hold
the syringe without crushing it and the
location/position of fingers within which the syringe
can be held (critical path values). This is analogous
with Kim’s conditions — C (Kim et al., 2008).
Identification of critical affordance factors and their
ranges are important for both quantitatively
comparing existing capabilities and requirements for
the capability to exist and in designing new devices
and products to meet new capabilities and
performance goals.

3.4.4 Affordance Path and Chain

For designed objects, to work, a sequential set of
affordances for the interacting components; needs to
interact in unison in an ‘affordance chain’ (Michell,
2012). For example, a syringe has a barrel and
needle and plunger with a seal that fits inside the
barrel. The action of pressing the plunger results in
the plunger pushing the air or fluid out of the barrel
— eg into a patient. We can say the ‘syringe affords
injection of a drug’. In an affordance chain (Michell,
2012), the parts are locked together by virtue of their
affordance/effectivity properties. An affordance
chain also occurs when an agent is holding and
manipulating objects, ie the object or tool becomes
an extension of the person’s hand due to the chain of
interactions at object-hand and object-object
interfaces. An affordance chain is a contiguous
interaction between affordances acting at the
same time. In contrast the affordance path refers
to a time sequence of related affordances that
together produce the conditions for a capability,
eg the capability of injecting a patient.

3.4.5 Resource Properties

Other properties of object and agent are required for
affordance-effectivity. For the syringe to be used
effectively it needs some kind of scale so that the
volume of fluid/drug inside it is known depending
on the position of the plunger on the scale. This is an
additional necessary resource property of the syringe
that enables the affordance-effectivity
transformations.

_~ Plunger

_

Barrel e

N
~ scale
Ise

Figure 3: Resource Properties for a Syringe.

3.4.6 Relationship to Other Models

We model the capability affordance model at two
levels of Kim’s grains, process level for the actions
and resources and atomic level for the affordance-
effectivity and disposition details (Kim et al., 2008).
At the point of affordance-effectivity interaction, the
mechanism and path relate to the juxtaposition
function. The path represents the space time rules of
the juxtaposition function for the affordance-
effectivity dual to work. Typically, this will involve
the need for objects to be touching, in the same
position and specific orientations needed for the
transition. Both the object and agent share path
spatial conditions. In the syringe example the
syringe position and orientation (p variables) must
match the hand/finger positions (¢ variables). The
mechanism represents the action forces
(biomechanical, chemical, electrical) etc that enable
the transition or change in physical state to occur at
the juxtaposition point. Both the object and the agent
share mechanism conditions. The critical affordance
factors refer to the wvariablles of the path and
mechanism and their range values for the
affordance-effectivity and hence capability to work.
(see Capability-Affordance Model (CAM) below).

4 CAPABILITY SIMULATION

4.1 Model Requirements

Based on the previous discussion, a capability model
should enable;

79

Fourth International Symposium on Business Modeling and Software Design

a) modelling of Affordance Paths (process level) at
a business process level from initial state to the goal
state; representation of affordance path/position and
their functions at atomic level, which characterises
transitions on the paths.

b) representation of the Mechanism/Force and their
functions, at atomic level, which characterises
transitions on the paths.

¢) modelling of critical affordance factors at atomic
level (the values and ranges of their variables) and
relationship to path and mechanism functions.

d) The model should show a number of actions at
the process and the atomic level that supports a
capability without excess complexity. The above are
all logical or mathematical constraints and hence a
simulation type modeling language with functions
and rules is required. Requirements b), c)) rule out
traditional BPMN process models and a),d) rules out
Kim and Lenarcic's approach. However, Colored
Petri Nets (Jensen, 1997) have been widely used to
model activities, states and processes. CPN makes
the conditions necessary for alternative affordances
visible. These conditions are important for capability
system analysis. Given our focus on modelling the
why and how of capability we propose making them
visible as guards of CPN transitions. As we show
later the critical affordance factors presented as
guards are great tools for simplification of
affordance models. Our approach combines CPN
with the Capability Affordance Model (CAM)
described earlier that allows us to abstract transitions
and simplify the model.

Process Level

Process

Activity a - - -Affordance Path.__| Activity b

Affordance Chain

ResourceRi Action BB® ResourceRi+l
Transformation

Affordance-
Effectivity Dual

Affordance Affordance
Mechanism Path
(AM) (AP)

Critical Affordance Factors (CAF)

Juxtaposition Function

Atomic Level

Figure 4: Capability-Affordance Model (CAM).

80

4.2 CPN and Capability

Coloured Petri Nets (Jensen, 1997) (van der Aalst &
Stahl, 2007) possess all the expressive means needed
for understanding and possible measurement of the
notion of capability. Coloured Petri Nets (CPN)
combine advantages of classical Petri Nets (PN)
with the expressive power of complex data types
“colors “(Jensen, 1997). An initialized non-
hierarchical CPN(net) without time stamps is a
tuple: CPN= (C,B,V,P,T),

- Cis a finite set of colors (data types), ¢ € C. For
example, the colset:
Syringe=productSyringeName*ForcePlunger* ForceSlip*
SyringeScale* SyringeopenScale (Fig 6.)

represents types of variable needed to describe
dispositions (variables) p and g of resources. Colors
and variables are defined in declarations. We use
data types and variables to represent resource types.
-P is a finite set of places, p1,...,pm € P, depicted
by ellipses (Figure 5). Each place p possesses a bag
bp.

-B is a bag of tokens (values) of colors ¢ €C
represented near places. We use tokens to model
instances of resources.

-V is a set of variables of colors ¢ € C.

-T is a finite set of transitions depicted by boxes
(Figure 5). Transitions represent actions and are
denoted by verbs.

-Each transition is a tuple = (I, g,0):

-1 is a finite set of input arcs. An input arc is directed
from a place p to transition ¢. An arc contains an
expression of the color of place p.

-g is a guard of transition 7. Each guard is a Boolean
function. By default each guard has value true. We
use guards to model the critical affordance factors
(space time and mechanism) necessary for the
affordance-effectivity dual.

-0 is a finite set of output arcs. An output arc is
directed from the transition to a place p. An arc is
labelled with an expression of a place Color.

Forcefsp Force-fsp
Finger Force
fh>fs, <fc Hold to inject
Grasp Syringe PushPlunger PlaceSyringe Draw up Find Vein + Inject
Closed InAmpoule Drug

Figure 5: Capability to Inject a Drug Example.

e

Modelling Capability and Affordance as Properties of Human/Machine Resource Systems

'S",1,10,

Syringe 1° ("s",1,10,0,3)
Empty.

Syringe

(s,fs,fe,Ls,Leo)

[fh>fs andal$o fh < fc]

((n,an,fsp,fh,gp,pv),(s,fs,fc,Ls,Leg)y” -Syringe
grasped by
(n,an|fsp,fh,gp,pv.

((n,an,fsp,fh,gp,pv), (s} s, fc,Ls,Lco))

2 |

((n,an,fsp,{h,gp,pv),(s,fs fe,Ls,

T (' true 4,4,

Nur:
Avail

rasp, perceives)
[fsp>ForcePlunger]

ble
Nurse

"n"true, 4, 4,grasp,perceives)

‘Syringe Ready
‘to draw up

NSGrasped

NSGrasped

,Lco))

(((n,an,fsp,fh,gp,pv),

(((n,an,fsp,fh,gp,pv;]

Change grasp
to hold to
inject

f5p,fh,gp, PV}, (5, fs,fc, L

NSdloaded
(((n,an,fsp,fh,Bp,pv), (s,fs,fe,Ls, Lco)),d)

s.fs,fc,Ls,Lco)))

aded
rug

NSdloaded

).(s.fs,fc,Ls,Lco)),d)

[pv=perceives]

(((n,an,fsp,

(((n,an,fsp,fh,gp,pv)

[pv=perceives]

Place syringe
in ampoule

(((n,an,fsp,fh,gp,pv),(s.fs,fe,Ls, L)), (c,d))

Ampoule C
with drug

ContainerDrug

(((n,an,fsp,fh,gp,pV),(s,fs,fc,Ls+1,Lco)),(f,d

)

[Ls<Ldo]

Syringe in
Ampoule

O

remove syringe|
from ampoule

NSReadyDrugDraw

(((n,an,fsp,fn,ap,pv), (s fs,fc,Ls, Lco)) (¢, d SN (N,an, f5p,fh,gp,pV), (5, fs fe, Ls, Lco)), (c,d))

of patients
in the
process

Unit Syrin,

n vein

0 NI

((((n,an,fsp,h,gp,p

[Ls=0;

Vein Found

in,ap,pv), (s,fs,fe,Ls, Lco)),d)

NSdioaded

s.fs,fe,Ls,Lco)), d)

ge

« fsp,fh

Patient

((((n,an,fsp,fh,gp,pv),(s,fs,fc,Ls,Lco)),d), pat)

((((n,an,f5p,fh,Gp,Pv), (5,5 fe,Ls-1,Lc0)),) pat)
[fsp>=ForcePlunger andalso Ls>0]

Inject

jectPatient

),(s.fs,fc,Ls,Lco)),d),pat)

(s/fs,fe,Ls,Lco)

f the proces:

Unit

(n,an,fsp,th,gp,pv)

Figure 6: CPN model of Capability - Inject a Drug.

Table 2: CPN-CAM Path and Mechanism Sequence.

Ref

CPN TERMS: P =place, T = transition

H
(at point of affordance-
efectivity)

MECHANISM

RITICAL AFFORDANCE[RESOURCE

FACTORS
(path/mechanism)

Syringe (pat,d Patient syringe
from Injected
patient
PatientInjected

CONDITIONS

Syringe

fs=1N, fc = 10N,

Empty/clean

GRASP SYRINGE: The empty syringe is grasped without slipping, then pushed
closed to draw up the drug. The The critical affordance expressions are shown
by the guard conditions on ‘grasp syringe’. hands fit round syringe, grasp force fs
must be greater than slip force (1N) but less than crush force (10N).

hands fit round syringe

grasp forces fh

T > fs, < fc, hands fit
round syringe, grasp force
fs must be greater than
slip force (1 N) < crush
force (10N)

Syringe s slip and
crush forces, scale Is
= 0and Ico =3cm

Nurse

Nurse

Syringe grasped by nurse

NSGrasped - the nurse
grasping the syringe

PUSH PLUNGER CLOSED: To draw up the drug the syringe plunger is pressed
closed by the nurse applying a force fsp > a minimum plunger force. Otherwise
the drug cannot enter the syringe.

hand attached to
plunger, plunger at end
of syringe Is = Isc = 0

plunger force + fsp

fsp1 > forceplunger (min
force to move it)

'Syringe held in closed
position

Syringe ready to draw up_(plunger in closed position)

Is =0

NSGrasped - with

Ampoule C with drug

drug type - ketamine

ContainerDrug - an

PLACE SYRINGE IN AMPOULE: containing the correct drug. If not in drug no
drug will be drawn up (capability failure). The mechanism here is the gasp force
holding the syringe and the ampoule - not shown

syringe needle
immersed in drug

nurse grasp forces on
syringe & ampoule

d=ketamine

ketamine is the correct
drug/label for patient

Syringe in Ampoule

Is=0

NSReadyDrugDraw

DRAW UP DRUG: Plunger is pulled back to draw up drug to the correct amount
in increments of Is + 1 . Mechanism here is pulling force on the plunger creating
a partial vacuum and atmospheric pressure forces the drug into the syringe.

Hand on plunger moved
to end of syringe ie Is =
Lco =3

negative plunger force =
fsp

fSp1 > forceplunger (min
force to move it), Is = 3

~fsp applied (not
shown) Is = Is +1 until
Is = 3 on scale

" [Syringe in Ampoule

NSReadyDrugDraw

REMOVE SYRINGE FROM AMPOULE: The draw up drug continues until Is =

3.= Lco. Incorrect amounts = capability failure / patient not anaesthetised

syringe not in ampoule

Syringe loaded with drug

Is =Lco

NSdloaded

CHANGE GRASP TO HOLD TO INJECT: Nurse's finger tip locations/forces
adjusted for safe drug injection at correct angle. Failure risks patient injury and
not/partly injecting the drug

Grip pattem (position of
fingers) = hold

grasp forces fh

> fs, h< fo, GipPattern
= hold

Syringe constrained
in‘hold to inject”
position with no slip

Syringe Held to inject

gp = hold

NSdloaded

FIND VEIN: A vein on the patient is perceived, based on the nurse’ knowledge.
Mechanism is nurse’ perception/cognition, visual ability (No vein, incorrect site =
capability failure)

Visual path: ie nurse
can see the patient and
the site of injection

perception-cognition
mechanism (Pv)

Pv = true

Nurse - has updated
knowledge - Vein is
found

Vein Found

pv = perceives

NSdloaded

Patient Ready

pat = Fred

Nurse sees the vein

PUSH SYRINGE IN VEIN: at correct angle and position

PV = perceives,pat = fred

Correct patient vs drug

Syringe in Vein

Is >0

NSinjectpatient

o |INJECT: Plunger pushed closed at correct injection site to ensure drug is

transferred to the patient, (otherwise no anaesthesia and capability fails)

syringe plunger location
Is=0

fsp

fsp > min, Is > 0

Syringe held in closed
position

P11[Syringe in Vein Is =0 NSInjectpatient
[T10|REMOVE SYRINGE... - Inject contintues until Is = O (syringe can be withdrawn) Is= 0 Syringe not in patient
P12[Syringe Empty Is= 0 Syringe

P13|Nurse Available Nurse

P14

Patient Injected

Patient Injected

S EXAMPLE APPLICATION

5.1

Based on structured interviews conducted at a health

trust hospital 2012) we model the

Injecting a Drug

(Michell,

capability to inject a drug using a syringe. Resources
include an active resource; a nurse and patient
named Fred and passive object resources; a syringe,
ampoule containing a drug (eg Ketamine). The

capability to ‘inject the drug’ depends on a process
of actions with the correct disposition of resources to

81

Fourth International Symposium on Business Modeling and Software Design

inject the drug. If any actions do not have the correct
conditions ie any of the critical affordance factors,
path and mechanism are incorrect, there will be no
capability. The key actions (See fig. 5) are the nurse
grasping the empty syringe and pushing the plunger
closed ready to draw up the drug. The nurse places
the syringe in a drug container (ampoule) and pulls
the plunger to draw up the drug. The nurse holds the
syringe in a different way — ‘hold to inject’ and
looks for a vein on the patient. Having perceived the
vein the nurse pushes the syringe into the vein at the
correct position and angle and then presses the
syringe plunger to inject the drug. See Table 2.

5.2 Behaviour of the CP-Net CAM
Model

Decomposing this process sequence into actions
(CPN transitions labelled T) and situations (places
labelled P) enables us to identify the critical state
transitions and affordances/effectivities. Figure 6
shows a CPN model of the capability to ‘inject the
drug.’. The initial state and the goal state of the
business process are modelled by places that may
contain tokens of given colors. Places are connected
via transitions so paths leading from initial states to
goal states relate to the capability of the system, ie
the CPN simulation reaching the goal state. Tokens -
represent instances of business object and agent
actions and values for the dispositions of each
resource (object or agent) at the point of interaction.
Transitions represent the transformation affordance-
effectivity interactions. A transition 7 of a CP-net is
enabled if places of all its input arcs contain tokens
to give values to input expressions of 7, and the
guard value is true. The guard values represent the
critical affordance factors. Eg in 77, perceives vein
must be true for injection to occur. Each enabled
transition ¢ can fire. When a transition ¢ fires then for
each input arc its expression is evaluated by a token
from the arc’s place. For each output arc its function
is calculated using the values of the variables from
the input arcs of the transition. The result of the
output function is added as a token into the place of
the output arc. Affordance is represented by
properties p of the passive resources and
environment. Eg Syringe —properties are implied by
the token: (s (name) ,fs (slipforce, fc (crush force),
Ls (syringe scale level, Lco (scale zero)). Effectivity
is represented by properties ¢ of the active resources
eg the nurse that acts on the syringe, eg Nurse
properties are implied by the token: (n (name), gn

(quality), fsp (plunger force), fh (hand force), gp
(grasp type), pv (perceives)). Affordance Path at

82

the transformation point, is represented as a net of
transitions from the initial places to the goal state G.
G is represented by the state of resources; patient is
injected, syringe is empty, nurse is available.
Affordance Mechanism is modelled with functions
corresponding to guards and functions associated
with arcs of transitions, eg the force th applied by
the nurse enable the syringe a) to be held in place to
execute the affordance-effectivity and b) a second
force fsp on the plunger moves it to draw up the
drug due to the mechanism of a vacuum created in
the syringe. Affordance Chains represent the
concatenation of resource instances and their
disposition variables, we use Cartesian products and
a value of token with a product type. Cartesian
products relate to the Affordance Chain of agent and
component objects (eg syringe plunger etc) needed
to enable the affordance-effectivity interaction. For
example a nurse holds a loaded syringe (NSDloaded)
or an ampoule containing a drug (ContainerDrug).
The mechanism, path and critical affordance factors
at transitions are shown in table 2.

6 DISCUSSION

The CPN Capability Affordance model provides a
precise means of modelling and simulating business
resource interactions and their capability properties
and quantitative values. The model shows that if no
affordance (space time) path to the goal state of
‘inject’ is possible there is no capability to inject.
This is represented by the existence of a complete
CPN trace to the end state goal. It also shows that
capability to inject depends on the mechanism of
forces and perception that relate to real-world
interactions and conditions. CPNs are executable.
This enables critical affordance factors for forces,
locations and positions to be identified and modelled
so key actions and required properties of the
resources for capability ‘to inject a drug’ can be
identified. For space and complexity reasons not all
factors are included. For example; a) the nurse must
perceive the drug label on the ampoule and ensure it
is matched to her knowledge of what drug should be
injected into what patient, b) the patient must be
perceived and identified by the nurse as the correct
patient.

7 CONCLUSIONS

This paper has shown how capability, affordance
and critical affordance factors can be presented in a

Modelling Capability and Affordance as Properties of Human/Machine Resource Systems

CPN model. It shows how capability depends on; a)
the existence of a possible path of interaction
between the resources (nurse, syringe, ampoule,
patient), b) a mechanism of transition (forces and
drug interaction in this case), c) specific critical
affordance factors relating to the actual value of the
affordance and effectivity variables for resources
such as people and objects within instances, d) That
these variables relate to Gibson’s original
explanation of affordance disposition and the
affordance-effectivity dual relationship. Future work
will focus on the detail of a single action and its
affordance-effectivity relationship by decomposing
this into affordance path, mechanism and affordance
factors, including perception and planning as well as
control actions.

REFERENCES

Andre 2011: http://www.usernomics.com/AnthonyAndre.
PDApresentation. WhatMakesAPrefilledSyringeUsable
AndErgonomic.July2011.pdf

Beimborn, D., Martin S.F., Homann U. 2005.

Capability Oriented Modelling of the Firm. IPSI
Conference.

Brooks R.A.. New approaches to robotics. Science,
253(5025):1227, 1991.

Gallouj, F., Weinstein O., 1997. Innovation in services.
Research Policy, Vol 26, Issues 4-5.

Gibson, J.: The Ecological Approach to Visual Perception.
Houghton Mifflin Company, Boston (1979)California
Management Review.

Greeno J.G. Gibson's affordances. Psychological Review,
101(2):336- 342,1994..

Jensen. K., Coloured Petri Nets.Springer.1997

Kim, N., Thiruvengada, H., Rothrock, L., Wysk, R. A., &
Shin, D., (2008). Modelling of affordances in human-
involved complex systems using finite state automata
(FSA). IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Humans and Systems.

Kim, N. H., (2010). The Formalism of Affordance in
Human-machine Cooperative Systems Using Finite
State Automata (FSA) (Doctoral dissertation, The
Pennsylvania State University).

Lenarc¢i¢, A. (2011). Formalizing affordances in situation

theory (Unpublished master’s thesis).Brock
University, Department of Computer Science, Ontario,
Canada.

Lenarc¢i¢, A., & Winter, M. (2013). Affordances in
Situation Theory. Ecological Psychology, 25(2), 155-
181.

Makadok, R. 2001. Towards a synthesis of the resource
based dynamic capability views of rent creation.
Strategic Management Journal.22: 387—401.

Mantel, B., Hoppenot, P., & Colle, E. (2012). Perceiving
for Acting With Teleoperated Robots: Ecological
Principles to Human—Robot Interaction Design.

Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 42(6), 1460-1475.
Mark, L. (1987). Eye height-scale information about
affordances: A study of sitting and stair climbing.
Journal of Experimental Psychology: Human

Perception and Performance, 13, 360-370.

Michell, V.A.(2011) A Focused Approach to Business
Capability. First International Symposium on Business
Modelling and Software Design — BMSD 2011, Sofia,
Bulgaria, pp. 105-113.

Michell V.A. (2012) The Capability Affordance Model:
Comparing Medical Capabilities. In: B. Shishkov
(Ed.) Business Modeling and Software Design —
BMSD’12 Revised Selected Papers, Springer-Verlag —
Lecture Notes in Business Information Processing,
Berlin-Heidelberg.

Michell V.A. Cognition capabilities and the capability-
affordance model. Business Modelling and Software
Design BMSD 13 Noordwijkerhout, Netherlands 8-10
July 2013

Ortmann, J. and Kuhn, W. (2010). Affordances as
Qualities. In Galton, A. and Mizoguchi,R., editor,
Formal Ontology in Information Systems Proceedings
of the Sixth International Conference (FOIS 2010),
volume 209 of Frontiers in Artificiallntelligence and
Applications, pages 117-130, Amsterdam Berlin
Tokyo Washington,DC. IOS Press.

Prahalad, C.K., Hamel G.: The Core Competence of the
Corporation. HBR, May- June 2-15(1990)

Sahin E., Cakmak, M., Dogar, M.R. Ugur, E.. Ucoluk G..
To Afford or Not to Afford: A New Formalization of
Affordances Toward Affordance-Based Robot
Control. Adaptive Behavior, 15(4):447-472, 2007.

Stamper (1994) SE4 Organisational dynamics social
norms and information systems

Steedman M.. Formalizing affordance. Proceedings of the
24th Annual Meeting of the Cognitive Science
Society, pages 834-839, 2002.

Stoffregen. T .A. Affordances as Properties of the
Animal-Environment System. Ecological Psychology,
15(2):115-134, 2003.

Turvey, M.T.: Affordances and Prospective Control: An
Outline of the Ontology. Ecological Psychology 4(3),
173-187 (1992)

Van der Aalst W.M.P. and Stahl. C. Modeling Business
Processes - A Petri Net-Oriented Approach. The MIT
Press, 2011.

Warren, W.H.: Perceiving Affordances: A Visual
Guidance of Stair Climbing. Journal of Experimental
Psychology: Human Perception and Performance
10(5), 683-703 (1984)

83

Using UML to Specify Artifact-centric Business Process Models

Keywords:

Abstract:

Montserrat Estafiol!, Anna Queralt?, Maria-Ribera Sancho' and Ernest Teniente'

YWniversitat Politécnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain

2Barcelona Supercomputing Center, Jordi Girona 31, 08034 Barcelona, Spain
{estanyol, ribera, teniente} @essi.upc.edu, anna.queralt@bsc.es

Business Artifacts, BALSA Framework, UML, Business Process Modeling

Business process modeling using an artifact-centric approach has raised a significant interest over the last
few years. One of the research challenges in this area is looking for different approaches to represent all the
dimensions in artifact-centric business process models. Bearing this in mind, the present paper proposes how
to specify artifact-centric business process models by means of diagrams based on UML. The advantages of
basing our work on UML are many: it is a semi-formal language with a precise semantics; it is widely used
and easy to understand; and it provides an artifact-centric specification which incorporates also some aspects

of process-awareness.

1 INTRODUCTION

Business process models have been traditionally
based on an activity-centric or process-centric per-
spective, defining how a business process or workflow
is supposed to operate, but giving little importance to
the information produced or needed by the process
(Damaggio et al., 2011).

In contrast, the artifact-centric (or data-centric)
approach to process modeling considers data as a
key element in the business process specification.
Business artifacts, representing the data, model key
business-relevant entities which are updated by a set
of services that implement business process tasks.
The main advantage of artifact-centric business pro-
cess models over process-centric approaches is that
it is possible to perform semantic reasoning on the
model. That is, the meaning of the tasks can be for-
mally defined and it is possible to automatically check
for any inherent contradictions in their definition. The
artifact-centric approach to business process model-
ing has been successfully applied in practice (Bhat-
tacharya et al., 2007a) and it has been shown to have
a great intuitive appeal to business managers and to
system developers.

To facilitate the analysis of artifact-centric pro-
cess models, (Hull, 2008; Bhattacharya et al., 2009)
proposed the use of the BALSA (Business Artifacts,
Lifecycles, Services and Associations) framework.
This framework establishes the common ground for
artifact-centric business process modeling by defin-

84

ing four different dimensions which, ideally, should
be present in any artifact-centric process model:

o Business Artifacts. They represent meaningful
data for the business, and as such they hold infor-
mation needed for the process. Each artifact cor-
responds to a real life entity, and therefore may be
related to other business artifacts. A business ar-
tifact has an identity and its progress through the
workflow can be tracked.

e Lifecycles. Lifecycles represent the evolution of
an artifact, showing the relevant stages in its life,
from the moment it is created until it is destroyed
or archived.

o Services. They represent tasks (i.e. meaningful
units of work) that evolve the artifact in order to
achieve the process’s goals. They create, update
and delete business artifacts.

e Associations. Associations represent constraints
in the manner how services make changes to ar-
tifacts. This means that associations can restrict
the order in which services are executed. They
may be specified using a procedural specification
(e.g. a workflow) or in a declarative way (e.g.
condition-action rules).

Notice that, for the remainder of this work, we use the
term service with the meaning defined above, which
differs from its definition in Service Science.

One of the research challenges in artifact-centric
business process modeling is to find the “best” model

(Hull, 2008), seeing that none of the existing ap-
proaches can handle the number of requirements of
business process modeling. After an extensive analy-
sis, we realized that the majority of work that has been
done in this area is based on complex mathematical
or logical languages to represent the processes. Al-
though they are practical from a formal perspective,
these languages are difficult to understand and not in-
tuitive for business people.

For this reason, in this paper we propose a way
to represent artifact-centric business process models
such that:

e It is a high-level representation.

e It is independent from the final implementation of
the business process.

o It represents most of the BALSA dimensions in a
graphical, intuitive way.

We do so by mapping each of the dimensions in
the BALSA framework to a graphical model, if pos-
sible. We will define these models using the UML
language as a basis because of its expressiveness, al-
though they could be defined using a different nota-
tion. UML is an ISO standard (ISO, 2012) and it is
also the de facto standard for software modeling. Al-
though initially conceived for software modeling, we
have found that it adapts easily to artifact-centric busi-
ness process modeling, as we can use it to represent
both the static structure and the dynamic behavior of
the process. Those aspects that cannot be represented
graphically using UML will be specified using OCL
(Object Constraint Language) (ISO, 2012). Although
they could be represented using another language, we
use OCL because it integrates naturally with UML
and it does not have the ambiguities of natural lan-
guage.

This paper extends our previous work in (Estafiol
et al., 2013) by describing in detail the characteristics
of the models we use to define artifact-centric busi-
ness process models using UML as a basis. We also
provide a detailed comparison of our proposal to pre-
vious work, and we include some process-centric ap-
proaches in the review.

The rest of the paper is structured in the follow-
ing way. Section 2 presents our proposal for artifact-
centric business process models using UML. In order
to illustrate it, we will use a running example based
on a city bicycle rental system. Section 3 analyzes
and reviews the related work. Finally, section 4 states
the conclusions and describes some further work.

Using UML to Specify Artifact-centric Business Process Models

2 ARTIFACT-CENTRIC
BUSINESS PROCESS MODELS
IN UML

One of the pending challenges in artifact-centric busi-
ness process modeling is to find the best model to rep-
resent each of the dimensions of the BALSA frame-
work (Hull, 2008). This section describes in de-
tail how UML and OCL can be applied to define an
artifact-centric process model following this frame-
work. From this process we obtain a platform-
independent model (a term we borrow from model-
driven architecture to refer to a model that is indepen-
dent of the final implementation platform) which is
detailed enough to show how the artifacts evolve and
the effect of services on them.

Business

Artifacts

.......... Lifecycles

~Associations
Services

Figure 1: Generic representation of the dimensions in the
BALSA framework.

Figure 1, adapted from (Hull, 2008), shows the
different BALSA dimensions and how they relate to
each other. We start by defining the business arti-
facts and how they are related to other objects. More
specifically, we will determine their attributes, the re-
lationships between them, and their identifiers (for
both the artifacts and the objects). Once we have this,
for each business artifact, we will define its lifecycle.
This should give us an overview of the different events
that trigger the transitions between states. After this,
it is time to specify the services that make up these
events and to establish the conditions or the order of
their execution (i.e. the associations).

We will illustrate our approach by means of a real-
life example, based on a city bicycle rental system,
such as Bicing. Bicing is a service offered by the
Barcelona City Council to registered users as an al-
ternative form of transport. Bicycles are docked to
stations placed around the city, so that users can take
abicycle form a certain station and return it to a differ-
ent one. For the purpose of our example, we will con-

85

Fourth International Symposium on Business Modeling and Software Design

sider that users are automatically blacklisted if they
do not return a bicycle within three days after taking
it.

2.1 Business Artifacts as a Class
Diagram

Business artifacts represent the relevant data for the
business. A business artifact has an identity, which
makes it distinguishable from any other artifact, and
can be tracked as it progresses through the workflow
of the business process execution. It will also have a
set of attributes to store the data needed for the work-
flow execution. Business artifacts may be related to
other business artifacts and objects. The main differ-
ence between a business artifact and an object is that
the business artifact has an associated lifecycle show-
ing its evolution, whereas the object does not. In busi-
ness terms, an artifact represents the explicit knowl-
edge concerning progress toward a business goal at
any instant.

The conceptual schema of business artifacts is in-
tended to hold all the information needed to complete
business process execution. Business artifacts and ob-
jects are similar to domain concepts because they rep-
resent real-world entities. As domain concepts can be
represented in a class diagram, we will be able to rep-
resent business artifacts and objects in the same way.
In particular, we will use a class diagram based on
UML, which will allow us to represent, in a graphical
way, the following elements:

e Classes, which correspond to business artifacts or
objects.

o Attributes for each of the classes, which contain
relevant information for each domain concept.

o Relationships between classes, showing how
they relate to each other.

o Integrity Constraints, which establish restric-
tions over the classes, the attributes or the rela-
tionships between them. Constraints can be rep-
resented either graphically, in the diagram itself,
or textually in OCL or in natural language.

Figure 2 shows the class diagram that corresponds
to our bicycle rental system example. The business
artifact in our example is Bicycle, as it keeps the in-
formation of the key elements needed to provide the
service: the bicycles themselves, which are identified
by their id. Apart from the business artifact, there
are several objects, such as AnchorPoint (identified by
number and Station, according to constraint 3), User
(identified by id) and Station (also identified by id).
For each artifact or object, we will have as many at-

86

tributes as relevant information we want to keep about
it.

The evolution of a business artifact is recorded in
the class diagram by means of subclasses. The use
of subclasses makes it possible to have exactly the at-
tributes and relationships that are needed according
to the artifact’s state, preserving at the same time its
original identifier and the characteristics that are in-
dependent of the artifact’s state which are represented
in the superclass.

In our example, the business artifact Bicycle has
four subclasses: Available, InUse, Lost and Unusable
which keep track of the different stages of the Bicycle
while containing information which is relevant only
for that particular stage. For instance, when a bicy-
cle is InUse, it is linked to a certain User and has
an attribute that stores when it is expected to be re-
turned. These subclasses also require restrictions to
ensure that the dates are coherent: we do not show
each of the restrictions due to space limitations.

Notice that BicycleRental is an association class:
it results from the reification of a relationship (i.e.
viewing it as class) between two or more classes
(Olivé, 2007). Association classes are particularly
useful when we want to record additional information
about a relationship, as it is the case here. They are
identified by the classes that take part in the relation-
ship; in this case, InUse and User (identified by its
id).

2.2 Lifecycles as State Machine
Diagrams

The lifecycle of a business artifact states the relevant
stages in the possible evolution of the artifact, from
inception to final disposal and archiving, as far as the
business process is concerned. It is natural to rep-
resent it by using a variant of state machines, where
each state of the machine corresponds to a possible
stage in the lifecycle of an artifact from the class dia-
gram (Hull, 2008).

Therefore, for each business artifact in our class
diagram, we will have the corresponding state ma-
chine diagram representing its lifecycle. Taking as
a basis UML state machine diagrams, our diagrams
consist of:

e States. They represent the stages in the evolu-
tion of a class or business artifact. Therefore, a
state machine diagram will have as many states as
relevant subclasses the business artifact has in the
class diagram.

o Transitions. Transitions, represented as arrows,
connect the different states (i.e. stages of the busi-

Using UML to Specify Artifact-centric Business Process Models

Bicycle

id : String

inServiceSince : Datg

BicycleState T {disjoint, complete}
Unusable Available Lost InUse
unsusableSince : Date lastReturn : Date [0..1] date : Date expectedReturn : Date
0..1 0..1 0.1 0..1
unusable bike is i {xort — | isin BicycleRental
1 -7 1 startTime : DateTime| _ |
confirmed : Boolean
AnchorPoint has los
number : Natural 1
locked : Boolean User
1. 1 | responsible id : String
belongs to - name : String
1 BlacklistedUser email : String
Station date : Date D> dateOrBirth : Date
id : String creditCard : Natural

address : String

1. Bicycles are identified by their id: context Bicycle inv: Bicycle.allInstances()-> isUnique(id)
Users and Stations are identified by their respective id: See restriction 1.

3. A Station cannot have two AnchorPoints with the same number:
context Station inv: self.anchorPoint->isUnique (number)

4. A BlacklistedUser cannot have any BicycleRentals: context BlacklistedUser inv: self.bicycleRental->isEmpty()

. Dates should be coherent: Several O0CL constraints would be required.

validUntil : Date

Figure 2: Class diagram showing the business artifa

ness artifact) in the state machine diagram. Tran-
sitions may have the following elements:

— Guard Constraints. They are conditions
which must be true to trigger a transition be-
tween two different states. However, if there is
an event in the transition, the event must take
place and the condition must be true in order
for the transition to be triggered.

Events: Events represent noteworthy occur-
rences that may trigger a transition between
states. If there is no condition, the transition
will be triggered when the event occurs; other-
wise, the condition must also be true when the
event takes place. We will distinguish between
two types of event:

* Internal Events. They correspond to condi-
tions stated over the content of the business ar-
tifacts or objects, or over time, and may cause
the execution of actions without requiring the
user’s intervention. They are referred to as
change or time events in (Olivé, 2007).

x External Events. They are explicitly re-
quested by the customer of the business pro-
cess and their behavior is specified by means
of a set of associated services. Therefore, ex-
ternal events are non-atomic. They roughly
correspond to call or signal events in (Olivé,
2007).

cts as classes with the corresponding integrity constraints.

Register New Bicycle

[Available l Return Bicycle InUse

Pick Up Bicycle [fail]
Repair Bicycle [§uccess] today() - startTime > day(3) / Blacklist User

Recover Bicycle [Lost]

Repair Bycicle [fail]

Pick Up Bicycle [success]

L—(Unusable

Figure 3: State machine diagram for Bicycle.

These events may be accompanied by an event-
dependent condition. These conditions are
placed after the event as they indicate how said
event must end in order for the transition to be
triggered.

— Actions. Actions are automatically executed
when the transition fires.

The state machine diagram for the key artifact Bi-
cycle in our example is shown in Figure 3. Notice that
each subclass of Bicycle in the class diagram in Fig-
ure 2 now corresponds to a stage in the state machine
diagram.

87

Fourth International Symposium on Business Modeling and Software Design

A Bicycle is created when it is registered in the
system. Initially it is in state Available. From the
Available state, a bicycle may become InUse, if a
User picks it up successfully, or Unusable, if he does
not (the bicycle may be broken or damaged). Notice
that both transitions are triggered by external event
Pick Up Bicycle, and the final state depends on the
event-dependent condition of this event. From state
InUse, a bicycle will become Available again when
the user returns it.

When a bicycle is Unusable, it needs to be re-
paired (Repair Bicycle) in order to become available
again. There are two possible outcomes. If the bi-
cycle is repaired successfully (event-dependent con-
dition success) it changes its state to Available. If,
on the other hand, it is beyond repair, the bicycle is
destroyed.

Finally, notice that if a bicycle is not returned for
three days after it is picked up (internal event foday()
— startTime > day(3)), action Blacklist User is exe-
cuted and the bicycle changes its state to Lost. If at
any time the bicycle is recovered (Recover Bicycle),
then it changes to state Unusable, as it will have to be
revised and repaired before it can be used again.

We would like to point out that this diagram does
not follow exactly the standard described in (ISO,
2012). This is due to the fact that our state machine
diagram has event-dependent conditions, which we
use to determine whether the event ends successfully
or not. In traditional UML state machine diagrams,
events are atomic and there is no need for such condi-
tions.

In addition to this, we also allow having more than
one outgoing transition from the initial node. This
is useful when the artifact can be created in differ-
ent ways. Alternatively, this situation could be repre-
sented using one outgoing transition from the initial
node, leading to a state called InitialState. From this
state, we could have the outgoing transitions that start
from the initial node and leave the rest of the state
machine diagram as it is. However, representing the
lifecycles in this way does not contribute any relevant
information and adds complexity to the final diagram.

2.3 Associations as Activity Diagrams

As we have just mentioned, external events and ac-
tions in a state machine diagram are non-atomic and
consist of a set of services. Consequently, for each ex-
ternal event and action in a state machine diagram we
need to specify the services it consists of and the as-
sociations between them. Associations in the BALSA
framework establish the conditions under which ser-

88

vices may execute.

We propose to specify associations using UML ac-
tivity diagrams as a basis. Therefore, we will define
one such diagram for each external event and action
in a state machine diagram. Then, for the state ma-
chine diagram in Figure 3, we would have an activity
diagram for the following external events: Register
New Bicycle, Pick Up Bicycle, Return Bicycle, Repair
Bicycle and Recover Bicycle. We would also have an
activity diagram for action Blacklist User.

The main elements of activity diagrams are the
following:

o Nodes. We will distinguish between two types of
nodes:

— Tasks.': Tasks represent the work that has to be
done. In most cases, each task corresponds to a
service (as defined in the BALSA framework).
However, tasks with a rake-like symbol are fur-
ther decomposed in another activity diagram.
This is particularly useful to reuse certain be-
haviors. It is the responsibility of the business
process modeler to decide how many tasks and
services are needed to specify the behavior of
an external event or action. Understandabil-
ity of the diagrams defined is the criterion that
should guide this decision.

— Control Nodes. They are used to manage the
flow. Examples of control nodes are decision
and merge nodes. Decision nodes indicate that
only one of the subsequent paths will be taken
according to a certain condition. Merge nodes,
on the other hand, indicate that the execution of
the activity diagram continues after one of its
incoming edges carries information. There are
other types of control nodes but we will focus
on these two.

o Edges. Edges connect the nodes among them and
establish the order for the execution of the tasks.

In addition to these, we will also use swimlanes,
on the one hand, and notes stereotyped as Partici-
pant, on the other hand. Although not strictly nec-
essary, swimlanes will provide additional information
by indicating the main business artifact or object that
is involved in each of the tasks and whether the cor-
responding task deals with material or informational
resources. Material tasks deal with physical elements
and are represented using stereotype material in the
swimlane or in the task itself. Informational tasks,
on the other hand, deal with the representation of the

ITasks are actually called actions in the terminology of
UML activity diagrams. However, in order to avoid confu-
sion with actions in state machine diagrams, we will refer
to them as tasks throughout this document.

Register New Bicycle

. Assign to
.9 Create New Bicycle O

<<Participant>>\
Clerk

Figure 4: Activity diagram for Register New Bicycle.

Bicycle

Gick Up Bicycle R

Bicycle <<material>>

Bicycle

[oK]
.%Gequest B\CyC@»{Get Bicycle Confirm Pick-Up
. -
' e id '

ad shape]

BicycleRental

| <<syicceed>>

<<Participant>>| Return to !
User "I "\ Anchor Point <<Participant
1 User
.
{ confirm <dai>> 26
Return

Figure 5: Activity diagram for Pick Up Bicycle.

real-life artifact or object. They are shown in the
activity diagram as tasks without stereotypes in the
swimlane. This distinction is important, because we
will only be able to specify services that deal with in-
formational resources and not material ones.

Moreover, we will use notes with stereotype Par-
ticipant to show the role/s of the people who carry out
a particular task.

Figure 4 shows the activity diagram of Register
New Bicycle. First of all, the clerk provides the infor-
mation of the new bicycle and, after this, he assigns
it to an anchor point. The main artifact involved in
both services is the Bicycle. In this particular case,
both tasks are atomic and deal with information and
not material resources.

Figure 5 represents the activity diagram of Pick
Up Bicycle. The user first requests a bicycle to the
system and then he physically picks it up from its an-
chor point. If the bicycle is not in good shape, he
returns it to an anchor point and then he confirms the
return. Notice that in this case the activity diagram
ends in failure. On the other hand, if the bicycle is
usable, he takes it with him and confirms the return.
Then the activity diagram ends successfully. It is im-
portant to make this distinction between success and
failure as depending on the result of the activity dia-
gram, the bicycle will change to state InUse or Unus-
able, as shown in Figure 3.

In this particular diagram, there are two tasks or
services that deal with material resources: Get Bicy-
cle and Return to Anchor Point, which correspond to
physically getting the bicycle from its anchor point

Using UML to Specify Artifact-centric Business Process Models

and placing it on the anchor point, respectively.

Notice that the approach that we follow to specify
associations is procedural in the sense that the activ-
ity diagrams define a clear order for the execution of
services. In contrast, most artifact-centric proposals
follow a declarative approach where associations de-
fine the conditions un