Boris Shishkov (Ed.)

Business Modeling
and Software Design

11th International Symposium, BMSD 2021
Sofia, Bulgaria, July 5-7, 2021
Proceedings

LNBIP 422

@ Springer

Lecture Notes
in Business Information Processing 422

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany
John Mylopoulos
University of Trento, Trento, Italy
Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia
Michael J. Shaw
University of lllinois, Urbana-Champaign, IL, USA
Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0003-3303-2896

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Boris Shishkov (Ed.)

Business Modeling

and Software Design
11th International Symposium, BMSD 2021

Sofia, Bulgaria, July 5-7, 2021
Proceedings

@ Springer

Editor
Boris Shishkov

University of Library Studies
and Information Technologies
Sofia, Bulgaria

Delft University of Technology
Delft, The Netherlands

BAS - Institute of Mathematics
and Informatics
Sofia, Bulgaria

IICREST
Sofia, Bulgaria

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-79975-5 ISBN 978-3-030-79976-2 (eBook)

https://doi.org/10.1007/978-3-030-79976-2

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-79976-2

Preface

This book contains the proceedings of BMSD 2021 (the 11th International Symposium
on Business Modeling and Software Design), held in Sofia, Bulgaria, on 5-7 July
(http://www.is-bmsd.org). BMSD is an annual event that brings together researchers
and practitioners interested in enterprise modeling and its relation to software
specification.

The BMSD Community is inspiring! Many of us met physically in Berlin last year,
for the 10th edition of the symposium, being so very happy about that. Probably few of
us would have imagined how special such a physical meeting would be, in the current
pandemic period. It is marked not only by huge stress among most people (in Europe
and beyond) but also by an increasing pressure over many systems: Hospitals were
burdened by too many patients in their intensive-care units; Border police officers were
pressed, pushed to control again the EU-internal borders; Police were not only expected
to fight crime but also to control the population by enforcing the imposed restrictions;
Universities had to go online, with no time to prepare; Travel companies were
excessively burdened to also consider the health status of their customers; Logistics
was severely affected by numerous travel restrictions; Banks had to accommodate new
(credit) schemes for the benefit of “problematic” customers; and so on. Unfortunately,
Information and Communication Technology (ICT) did not bring benefits in this regard
as much as we all hoped for. This concerns an expectations mismatch between Society
and Big Tech (BT): (i) Society expected that BT would truly aim to meet user needs
(especially during the pandemic), rather than re-branding and imposing existing
technology-driven solutions; (ii) BT expected from Society more trust and coopera-
tiveness rather than suspicion. We argue that very few existing IT solutions have
undergone essential developments in response to the changing and increasing societal
needs during the pandemic, neither have we seen cutting-edge IT innovations in the
2020-21 period. But what we see instead is an increasing power of BT, that goes
beyond the boundaries of ICT, entering the territory of politics. Some top BT repre-
sentatives seem to be less interested in stimulating the creation of new ICT-related
solutions for the benefit of people, being at the same time more interested in entering
healthcare-related discussions and stating opinions about how people should live. Last
but not least, BT has accumulated abundant wealth in the abovementioned period, and
this raises questions. Can we speak of a delivery of ICT-related solutions in response to
user needs, for the benefit of Society, and in concert with human values and public
values? Do we observe BT doing things that normally politicians should do? Are users
“the King” whose needs are to be identified and reflected in REQUIREMENTS that in
turn “govern” the ICT developments or is it the case that BT “determines” what the
user needs SHOULD be? We have very simple examples from the last several years:
(i) A laptop purchased several years ago is very similar (as it concerns its key features)
to the corresponding model of today; (i) Some big operating systems are enforcing
updates almost every week but what we get as users remains nearly the same; (iii) The

http://www.is-bmsd.org

vi Preface

platforms we are using for routing, e-banking, and so on are mainly changing their
fancy banners and colors but essentially what we benefit from using them remains the
same. Those examples indicate that often a new ICT project is realized just for the sake
of realizing yet another ICT project. USER NEEDS and REQUIREMENTS are not
seen on the horizon. More and more we observe R&D projects realized by huge
interdisciplinary teams where there is a HUGE GAP between the work of domain
specialists and the work of technology developers. Domain specialists have their
attitudes but are often unable to judge how a proposed ICT solution is relevant to
particular domain-specific needs and whether at all the ICT-system-to be would con-
tribute to any relevant improvements. This gives “unlimited power” in the hands of ICT
developers who would often “massage” some of their existing products and re-shape
+re-brand them as “new” products. The funding is provided and a “new product” is
delivered. If in several years it would appear that the product is not good enough, this
may just lead to yet another project. Is this what we want? Is this what we need?
Probably we should all be listening to the WIND OF CHANGE! We should bring back
ICT DEVELOPMENT and SOFTWARE DESIGN to its CREATIVE ROOTS and
SENSITIVITY to USER NEEDS. Not always BOTTOM-UP (technology-driven)
solutions are the best for Society, especially if it is very difficult for other stakeholders
to adequately perceive the relevance and utility of the proposed technical and tech-
nological solution(s). Often a USER-CENTRIC approach would be better in this
regard, especially if the demands of domain specialists are properly codified in
MODELS that in turn would “fuel” the technical specifications. And this all should be
essentially driven by the goal of satisfying user needs, as stated in the preface of the
BMSD 2020 Proceedings. As also mentioned in the BMSD 2020 preface, THE way of
achieving this is to methodologically align business (enterprise) modeling and software
design, this bringing the BMSD Community together, inspired to contribute to the area
of ENTERPRISE INFORMATION SYSTEMS.

Since 2011, we have enjoyed ten successful BMSD editions. The first BMSD
edition (2011) took place in Sofia, Bulgaria, and the theme of BMSD 2011 was:
“Business Models and Advanced Software Systems.” The second BMSD edition
(2012) took place in Geneva, Switzerland, with the theme: “From Business Modeling
to_Service-Oriented Solutions.” The third BMSD edition (2013) took place in
Noordwijkerhout, The Netherlands, and the theme was: “Enterprise Engineering and
Software Generation.” The fourth BMSD edition (2014) took place in Luxembourg,
Grand Duchy of Luxembourg, and the theme was: “Generic Business Modeling
Patterns and Software Re-Use.” The fifth BMSD edition (2015) took place in Milan,
Italy, with the theme: “Toward Adaptable Information Systems.” The sixth BMSD
edition (2016) took place in Rhodes, Greece, and had the theme: “Integrating Data
Analytics in Enterprise Modeling and Software Development.” The seventh BMSD
edition (2017) took place in Barcelona, Spain, and the theme was: “Modeling
Viewpoints and Overall Consistency.” The eighth BMSD edition (2018) took place in
Vienna, Austria, with the theme: “Enterprise Engineering and Software Engineering -
Processes and Systems for the Future.” The ninth BMSD edition (2019) took place in
Lisbon, Portugal, and the theme of BMSD 2019 was: “Reflecting Human Authority
and Responsibility in Enterprise Models and Software Specifications”. The tenth
BMSD edition (2020) took place in Berlin, Germany, and the theme of BMSD 2020

Preface vii

was: “Towards Knowledge-Driven Enterprise Information Systems”. The current
edition brings BMSD back to where it once started — Sofia, Bulgaria. BMSD 2021
marks the ELEVENTH EVENT, with the theme: “Towards Enterprises and Soft-
ware that are Resilient Against Disruptive Events.”

We are proud to have attracted distinguished guests as keynote lecturers, who are
renowned experts in their fields: Manfred Reichert, Ulm University, Germany (2020),
Mathias Weske, HPI - University of Potsdam, Germany (2020), Jose Tribolet, IST -
University of Lisbon, Portugal (2019), Jan Mendling, WU Vienna, Austria (2018),
Roy Oberhauser, Aalen University, Germany (2018), Norbert Gronau, University of
Potsdam, Germany (2017), Oscar Pastor, Polytechnic University of Valencia, Spain
(2017), Alexander Verbraeck, Delft University of Technology, The Netherlands
(2017), Paris Avgeriou, University of Groningen, The Netherlands (2016), Jan
Juerjens, University of Koblenz-Landau, Germany (2016), Mathias Kirchmer,
BPM-D, USA (2016), Marijn Janssen, Delft University of Technology, The Nether-
lands (2015), Barbara Pernici, Politecnico di Milano, Italy (2015), Henderik Proper,
Public Research Centre Henri Tudor, Grand Duchy of Luxembourg (2014), Roel
Wieringa, University of Twente, The Netherlands (2014), Kecheng Liu, University of
Reading, UK (2013), Marco Aiello, University of Groningen, The Netherlands (2013),
Leszek Maciaszek, Wroclaw University of Economics, Poland (2013), Jan L.
G. Dietz, Delft University of Technology, The Netherlands (2012), Ivan Ivanov, SUNY
Empire State College, USA (2012), Dimitri Konstantas, University of Geneva,
Switzerland (2012), Marten van Sinderen, University of Twente, The Netherlands
(2012), Mehmet AKksit, University of Twente, The Netherlands (2011), Dimitar
Christozov, American University in Bulgaria — Blagoevgrad, Bulgaria (2011), Bart
Nieuwenhuis, University of Twente, The Netherlands (2011), and Hermann Maurer,
Graz University of Technology, Austria (2011).

The high quality of the BMSD 2021 technical program is enhanced by two keynote
lectures delivered by outstanding guests and previous BMSD keynote speakers:
Norbert Gronau, University of Potsdam, Germany (the title of his lecture is: “The
Socio-Technical Factory of the Future: How Al and Human Can Work Together”) and
Alexander Verbraeck, Delft University of Technology, The Netherlands (the title of
his lecture is: “Resilient Enterprise Information Systems”). Also, the presence (phys-
ically or distantly) of former BMSD keynote lecturers is much appreciated: Roy
Oberhauser (2018), Mathias Kirchmer (2016), Marijn Janssen (2015), and Marten van
Sinderen (2012). The technical program is further enriched by a panel discussion
(featured by the participation of some of the abovementioned outstanding scientists)
and also by other discussions stimulating community building and facilitating possible
R&D project acquisition initiatives. Those special activities are definitely contributing
to maintaining the event’s high quality and inspiring our steady and motivated
Community.

The BMSD 2021 Technical Program Committee consists of a Chair and 106
Members from 36 countries (Australia, Austria, Brazil, Bulgaria, Canada, China,
Colombia, Denmark, Egypt, Estonia, Finland, France, Germany, Greece, India,
Indonesia, Italy, Lithuania, Grand Duchy of Luxembourg, Malaysia, Mexico, New
Zealand, Palestine, Poland, Portugal, Russia, Singapore, Slovak Republic, Slovenia,
Spain, Sweden, Switzerland, Taiwan, The Netherlands, UK, and USA, listed

viii Preface

alphabetically) — all of them competent and enthusiastic representatives of prestigious
organizations.

In organizing BMSD 2021, we have observed highest ethical standards: We
guarantee at least two reviews per submitted paper (assuming reviews of adequate
quality), under the condition that the paper fulfills the BMSD 2021 requirements. In
assigning a paper for reviewing, it is our responsibility to provide reviewers that have
relevant expertise. Sticking to a double-blind review process, we guarantee that a
reviewer would not know who the authors of the reviewed paper are (we send anon-
ymized versions of the papers to the reviewers) and an author would not know who has
reviewed his/her paper. We require that a reviewer respects the content of the reviewed
paper and does not disclose (parts of) its content to third parties before the symposium
(and also after the symposium in case the manuscript gets rejected). We guarantee
against conflict of interests, by not assigning papers for reviewing by reviewers who
are immediate colleagues of any of the co-authors. In our decisions to accept/reject
papers, we guarantee against any discrimination based on age, gender, race, or
religion. As it concerns the EU data protection standards, we stick to the GDPR
requirements.

We have demonstrated for a 11th consecutive year a high quality of papers. We are
proud to have succeeded in establishing and maintaining (for many years already) a
high scientific quality (as it concerns the symposium itself) and a stimulating collab-
orative atmosphere; also, our Community is inspired to share ideas and experiences.

As mentioned already, BMSD is essentially leaning toward ENTERPRISE
INFORMATION SYSTEMS (EIS), by considering the MODELING
OF ENTERPRISES AND BUSINESS PROCESSES as a basis for SPECIFYING
SOFTWARE. Further, in the broader EIS context, BMSD 2021 addresses a large
number of research areas and topics, as follows:

> BUSINESS PROCESSES AND ENTERPRISE ENGINEERING - enterprise
systems; enterprise system environments and context; construction and function; actor
roles; signs and affordances; transactions; business processes; business process
coordination; business process optimization; business process management and
strategy execution; production acts and coordination acts; regulations and business
rules; enterprise (re-) engineering; enterprise interoperability; inter-enterprise coor-
dination; enterprise engineering and architectural governance; enterprise engineering
and software generation; enterprise innovation.

» BUSINESS MODELS AND REQUIREMENTS - essential business models;
re-usable business models; business value models; business process models; business
goal models, integrating data analytics in business modeling; semantics and business
data modeling; pragmatics and business behavior modeling; business modeling
viewpoints and overall consistency; business modeling landscapes; requirements
elicitation; domain-imposed and user-defined requirements; requirements specification
and modeling; requirements analysis and verification; requirements evolution;
requirements traceability; usability and requirements elicitation.

» BUSINESS MODELS AND SERVICES - enterprise engineering and service
science; service-oriented enterprises; from business modeling to service-oriented
solutions; business modeling for software-based services; service engineering;
business-goals-driven service discovery and modeling; technology-independent and

Preface ix

platform-specific service modeling; re-usable service models; business-rules-driven
service composition; web services; autonomic service behavior; context-aware service
behavior; service interoperability; change impact analysis and service management;
service monitoring and quality of service; services for loT applications; service
innovation.

» BUSINESS MODELS AND SOFTWARE - enterprise engineering and software
development; model-driven engineering; co-design of business and IT systems;
business-IT alignment and traceability; alignment between IT architecture and busi-
ness strategy; business strategy and technical debt; business-modeling-driven software
generation; normalized systems and combinatorial effects; software generation and
dependency analysis; component-based business-software alignment; objects, com-
ponents, and modeling patterns; generic business modeling patterns and software
re-use; business rules and software specification; business goals and software inte-
gration; business innovation and software evolution; software technology maturity
models, domain-specific models; croscutting concerns - security, privacy, distribution,
recoverability, logging, performance monitoring.

» INFORMATION SYSTEMS ARCHITECTURES AND PARADIGMS -
enterprise architectures; service-oriented computing; software architectures; cloud
computing; autonomic computing (and intelligent software behavior); context-aware
computing (and adaptable software systems); affective computing (and user-aware
software systems); aspect-oriented computing (and non-functional requirements);
architectural styles; architectural viewpoints.

» DATA ASPECTS IN BUSINESS MODELING AND SOFTWARE
DEVELOPMENT - data modeling in business processes; data flows and business
modeling; databases, OLTP, and business processes; data warehouses, OLAP, and
business analytics; data analysis, data semantics, redundancy, and quality-of-data;
data mining, knowledge discovery, and knowledge management; information security
and business process modeling; categorization, classification, regression, and clus-
tering; cluster analysis and predictive analysis; ontologies and decision trees; decision
tree induction and information gain; business processes and entropy; machine
learning and deep learning - an enterprise perspective; uncertainty and context states;
statistical data analysis and probabilistic business models.

» BLOCKCHAIN-BASED BUSINESS MODELS AND INFORMATION
SYSTEMS - smart contracts; blockchains for business process management; block-
chain schemes for decentralization; the blockchain architecture - implications for
systems and business processes; blockchains and the future of enterprise information
systems; blockchains and security/privacy/trust issues.

» IoT AND IMPLICATIONS FOR ENTERPRISE INFORMATION SYS-
TEMS - the IoT paradigm; IoT data collection and aggregation; business models and
IoT; IoT-based software solutions; IoT and context-awareness; loT and public values;
IoT applications: smart cities, e-Health, smart manufacturing.

BMSD 2021 received 61 paper submissions from which 27 papers were selected for
publication in the symposium proceedings. Of these papers, 14 were selected for a
30-minute oral presentation (full papers), leading to a full-paper acceptance ratio of
23% (compared to 22% in 2019 and 19% in 2018, and exactly the same as in the
previous year) - an indication of our intention to preserve a high-quality forum for the

X Preface

next editions of the symposium. The BMSD 2021 keynote lecturers and authors come
from: Austria, Bulgaria, China, Colombia, Finland, Germany, Indonesia, Italy,
Norway, Pakistan, Portugal, Serbia, Sweden, Switzerland, The Netherlands, and USA
(listed alphabetically); that makes a total of 16 countries (compared to 10 in 2019, 15 in
2018, 20 in 2017, 16 in 2016, 21 in 2015, 21 in 2014, 14 in 2013, 11 in 2012, 10 in
2011, and exactly the same as in the previous year) to justify a strong international
presence. Three countries have been represented at all eleven BMSD editions so far —
Bulgaria, Germany, and The Netherlands — indicating a strong European influence.

Clustering BMSD papers is always inspiring because this gives different perspec-
tives with regard to the challenge of adequately specifying software based on
enterprise modeling. As it concerns the BMSD 2021 full papers, some of them are
directed towards BUSINESS MODELING while others are touching upon
CONTEXT-AWARENESS; some papers address issues concerning SECURITY and
PRIVACY while others are leaning towards KNOWLEDGE MANAGEMENT and
GOVERNANCE; finally, there are papers addressing software development, by con-
sidering ARCHITECTURES and DESIGN. As it concerns the BMSD 2021 short
papers, some of them are more CONCEPTUAL, touching upon information systems,
the digital transformation, and enterprise architectures, while others are leaning towards
REQUIREMENTS; some papers are directed towards SOFTWARE ENGINEERING
while others are touching upon issues related to DATA, and still others are considering
PROJECT TIME ANALYSIS and SMART CONTRACTING; finally, there are
application-oriented papers featuring INTERNET-of-THINGS and SMART CITIES.

BMSD 2021 was organized and sponsored by the Interdisciplinary Institute for
Collaboration and Research on Enterprise Systems and Technology (IICREST) and
technically co-sponsored by BPM-D. Cooperating organizations were Aristotle
University of Thessaloniki (AUTH), Delft University of Technology (TU Delft), the
UTwente Digital Society Institute (DSI), the Dutch Research School for Information
and Knowledge Systems (SIKS), and AMAKOTA Ltd.

Organizing this interesting and successful symposium required the dedicated efforts
of many people. First, we thank the authors, whose research and development
achievements are recorded here. Next, the Program Committee members each deserve
credit for the diligent and rigorous peer reviewing. Further, we would like to mention
the excellent organization provided by the IICREST team (supported by its logistics
partner, AMAKOTA Ltd.) — the team (words of gratitude to Aglika Bogomilova!) did all
the necessary work for delivering a stimulating and productive event, supported by the
Hilton-Sofia team (words of gratitude to Katia Kovacheva!) and also by Christoph
Hartmann. We are grateful to Springer for their willingness to publish the current
proceedings and we would like to especially mention Ralf Gerstner and Christine
Reiss, appreciating their professionalism and patience (regarding the preparation of the
symposium proceedings). We are certainly grateful to our keynote lecturers, Prof.
Gronau and Prof. Verbraeck, for their invaluable contribution and for their taking the
time to synthesize and deliver their talks. I take the opportunity to also personally

Preface xi

address them: Alexander, Norbert, your continuing support to BMSD in so many ways
is more than appreciated!

We wish you inspiring reading! We look forward to meeting you next year in
Fribourg, Switzerland, for the 12th International Symposium on Business Modeling
and Software Design (BMSD 2022), details of which will be made available on http://
www.is-bmsd.org.

June 2021 Boris Shishkov

http://www.is-bmsd.org
http://www.is-bmsd.org

Chair

Boris Shishkov

Organization

University of Library Studies and Information Technology, Bulgaria
Delft University of Technology, The Netherlands
BAS - Institute of Mathematics and Informatics, Bulgaria

IICREST, Bulgaria

Program Committee

Marco Aiello
Mehmet Aksit

Amr Ali-Eldin
Apostolos Ampatzoglou
Paulo Anita

Juan Carlos Augusto
Paris Avgeriou
Saimir Bala

Jose Borbinha
Frances Brazier
Bert de Brock
Barrett Bryant
Cinzia Cappiello
Kuo-Ming Chao
Michel Chaudron
Samuel Chong
Dimitar Christozov

Jose Cordeiro
Robertas Damasevicius
Ralph Deters
Claudio Di Ciccio
Jan L. G. Dietz
Aleksandar Dimov
Teduh Dirgahayu
Dirk Draheim
John Edwards
Hans-Georg Fill
Chiara Francalanci
Veska Georgieva

University of Stuttgart, Germany

University of Twente, The Netherlands

Mansoura University, Egypt

University of Macedonia, Greece

Delft University of Technology, The Netherlands

Middlesex University, UK

University of Groningen, The Netherlands

WU Vienna, Austria

University of Lisbon, Portugal

Delft University of Technology, The Netherlands

University of Groningen, The Netherlands

University of North Texas, USA

Politecnico di Milano, Italy

Coventry University, UK

Chalmers University of Technology, Sweden

Fullerton Systems, Singapore

American University in Bulgaria - Blagoevgrad,
Bulgaria

Polytechnic Institute of Setubal, Portugal

Kaunas University of Technology, Lithuania

University of Saskatchewan, Canada

Sapienza University of Rome, Italy

Delft University of Technology, The Netherlands

Sofia University St. Kliment Ohridski, Bulgaria

Universitas Islam Indonesia, Indonesia

Tallinn University of Technology, Estonia

Aston University, UK

University of Fribourg, Switzerland

Politecnico di Milano, Italy

Technical University — Sofia, Bulgaria

Xiv Organization

J. Paul Gibson
Rafael Gonzalez
Paul Grefen
Norbert Gronau
Clever Ricardo Guareis
de Farias
Jens Gulden
Ilian Ilkov
Ivan Ivanov
Marijn Janssen
Gabriel Juhas
Dmitry Kan
Stefan Koch
Vinay Kulkarni
John Bruntse Larsen
Peng Liang
Kecheng Liu
Claudia Loebbecke
Leszek Maciaszek
Somayeh Malakuti
Jelena Marincic
Raimundas Matulevicius
Hermann Maurer
Heinrich Mayr
Nikolay Mehandjiev
Jan Mendling
Michele Missikoff

Dimitris Mitrakos
Ricardo Neisse
Bart Nieuwenhuis
Roy Oberhauser
Olga Ormandjieva
Paul Oude Luttighuis
Mike Papazoglou
Marcin Paprzycki
Jeffrey Parsons
Oscar Pastor
Krassie Petrova
Prantosh K. Paul
Barbara Pernici
Doncho Petkov
Gregor Polancic
Henderik Proper
Mirja Pulkkinen
Ricardo Queiros

Telecom & Management SudParis, France

Javeriana University, Colombia

Eindhoven University of Technology, The Netherlands
University of Potsdam, Germany

University of Sao Paulo, Brazil

Utrecht University, The Netherlands

IBM, The Netherlands

SUNY Empire State College, USA

Delft University of Technology, The Netherlands

Slovak University of Technology, Slovak Republic

Silo Al, Finland

Johannes Kepler University Linz, Austria

Tata Consultancy Services, India

Technical University of Denmark, Denmark

Wuhan University, China

University of Reading, UK

University of Cologne, Germany

University of Economics, Poland

ABB Corporate Research Center, Germany

ASML, The Netherlands

University of Tartu, Estonia

Graz University of Technology, Austria

Alpen-Adria-University Klagenfurt, Austria

University of Manchester, UK

WU Vienna, Austria

Institute for Systems Analysis and Computer Science,
Italy

Aristotle University of Thessaloniki, Greece

European Commission Joint Research Center, Italy

University of Twente, The Netherlands

Aalen University, Germany

Concordia University, Canada

Le Blanc Advies, The Netherlands

Tilburg University, The Netherlands

Polish Academy of Sciences, Poland

Memorial University of Newfoundland, Canada

Universidad Politecnica de Valencia, Spain

Auckland University of Technology, New Zealand

Raiganj University, India

Politecnico di Milano, Italy

Eastern Connecticut State University, USA

University of Maribor, Slovenia

LIST, Grand Duchy of Luxembourg

University of Jyvaskyla, Finland

Polytechnic of Porto, Portugal

Jolita Ralyte

Julia Rauscher
Stefanie Rinderle-Ma
Werner Retschitzegger
Jose-Angel Rodriguez
Wenge Rong

Ella Roubtsova

Irina Rychkova
Shazia Sadiq

Ronny Seiger
Andreas Sinnhofer
Valery Sokolov
Richard Starmans
Hans-Peter Steinbacher

Janis Stirna

Coen Suurmond
Adel Taweel

Bedir Tekinerdogan
Ramayah Thurasamy
Jose Tribolet
Roumiana Tsankova
Martin van den Berg

Willem-Jan van den Heuvel
Han van der Aa
Marten van Sinderen
Damjan Vavpotic
Alexander Verbraeck
Hans Weigand

Roel Wieringa
Dietmar Winkler
Shin-Jer Yang
Benjamin Yen

Fani Zlatarova

Invited Speakers

Norbert Gronau
Alexander Verbraeck

Organization

University of Geneva, Switzerland

University of Augsburg, Germany

University of Vienna, Austria

Johannes Kepler University Linz, Austria

Tecnologico de Monterrey, Mexico

Beihang University, China

Open University, The Netherlands

University Paris 1 Pantheon-Sorbonne, France

University of Queensland, Australia

University of St. Gallen, Switzerland

Graz University of Technology, Austria

Yaroslavl State University, Russia

Utrecht University, The Netherlands

FH Kufstein Tirol University of Applied Sciences,
Austria

Stockholm University, Sweden

Cesuur B.V., The Netherlands

Birzeit University, Palestine

Wageningen University, The Netherlands

Universiti Sains Malaysia, Malaysia

IST - University of Lisbon, Portugal

Technical University - Sofia, Bulgaria

Utrecht University of Applied Sciences,
The Netherlands

Tilburg University, The Netherlands

Humboldt University of Berlin, Germany

University of Twente, The Netherlands

University of Ljubljana, Slovenia

Delft University of Technology, The Netherlands

Tilburg University, The Netherlands

University of Twente, The Netherlands

Vienna University of Technology, Austria

Soochow University, Taiwan

University of Hong Kong, China

Elizabethtown College, USA

University of Potsdam, Germany
Delft University of Technology, The Netherlands

XV

Abstracts of Keynote Lectures

The Socio-Technical Factory of the Future:
How AI and Human Can Work Together

Norbert Gronau

University of Potsdam, Germany
norbert.gronaulwi.uni-potsdam.de

Abstract. We are in the midst of the 4th industrial revolution. Small inexpensive
computers with very high processing ability are more and more used in factories
and logistical networks to increase the competitive ability of participating
companies. The keynote of Prof. Gronau, member of the German Academy of
Technical Sciences ACATECH and director of the 4IR research center Potsdam,
Germany, will provide an overview about these achievements and will address
the question, which position belongs to the humans in the factory of the future?
As Artificial Intelligence (Al) is also enlarging its capabilities, it is possible to
create a joint Al-human team in the factory. The keynote will show the elements
of such a factory system, how to achieve it and its benefits for humans and the
company as well.

Resilient Enterprise Information Systems

Alexander Verbraeck

Delft University of Technology, The Netherlands
a.verbraeck@tudelft.nl

Abstract. Crises such as cyber-attacks and the Corona pandemic have unfor-
tunately demonstrated that many of the important information systems in
businesses and Government are not resilient. After disruptive events, these
systems have long periods of reduced service levels, and it takes major efforts to
restore the systems to their normal state of operation. After a brief introduction
into the topic of resilience, we will discuss how risk management frameworks,
originating from the project management field and the safety sciences field, can
help to assess the vulnerability of information systems or their components.
Combined with an evaluation of the criticality of the components, a decision can
be made to invest in either reducing their vulnerability or their criticality, or
both. Techniques for improving the resilience of information systems are readily
available from systems engineering and range from decoupling important parts
so they can function independently to duplication of subsystems that provide
critical services. Many of these are already being used as part of the design of
complex information systems but the deployment is often not based on a
structured assessment to make the entire information system more resilient. The
presentation will illustrate the usage of risk assessment methods and architec-
tural solutions with a number of examples.

Contents

Full Papers

Extending Business Model Development Tools with Consolidated
Expert Knowledge. 3
Sebastian Gottschalk, Jonas Kirchhoff, and Gregor Engels

Disruption and Images of Organisation 22
Coen Suurmond

VR-UML: The Unified Modeling Language in Virtual Reality —
An Immersive Modeling Experience 40
Roy Oberhauser

A Reference Architecture for Enhanced Design of Software Ecosystems 59
Sanket Kumar Gupta, Bahar Schwichtenberg, and Gregor Engels

Managing Knowledge of Intelligent Systems: The Design of a Chatbot

Using Domain-Specific Knowledges 78
Marcus Grum, David Kotarski, Maximilian Ambros, Tibebu Biru,
Hermann Krallmann, and Norbert Gronau

From Elementary User Wishes and Domain Models
to SQL-Specifications 97
Bert de Brock

Towards Well-Founded and Richer Context-Awareness
Conceptual Models e 118
Boris Shishkov and Marten van Sinderen

On Context Frames and Their Implementations. 133
Johan Silvander

Benefits and Challenges in Information Security Certification —
A Systematic Literature Review 154
Mike Hulshof and Maya Daneva

Privacy as a Service (PraaS): A Conceptual Model of GDPR to Construct
Privacy Services 170
Ella Roubtsova and Rachelle Bosua

Privacy Enabled Software Architecture 190
Emilia Stefanova and Aleksandar Dimov

XXil Contents

Modeling the Handling of Knowledge for Industry 4.0 207
Norbert Gronau

Quantification of Knowledge Transfers: The Design of an Experiment
Setting for the Examination of Knowledge Transfers. 224
Marcus Grum and Norbert Gronau

Digital Transformation of Business Process Governance. 243
Mathias Kirchmer

Short Papers

Revisiting Human Relativism — Guidelines for Precision in Information
Systems Modelling 265
José Cordeiro

Digital Transformation: Current Challenges and Future Perspectives 275
Ivan 1. Ivanov

Conceptual Model of the Ecosystem Value Balance 286
Krista Sorri, Katariina Yrjonkoski, and Linnea Harala

Enterprise Architecture and Agility: A Systematic Mapping Study. 296
Hong Guo, Darja Smite, Jingyue Li, and Shang Gao

View and Viewpoint Reconstruction for Assisting the Preparation
of Participatory Modeling Sessions 306
David Naranjo and Mario Sanchez

What to Do When Requirements Are Changing All the Time?
A Control System Example 317
Bert de Brock

Value-Based Fuzzy Approach for Non-functional
Requirements Prioritization. 330
Khush Bakht ljaz, Irum Inayat, Maya Daneva, and Faiza A. Bukhsh

Towards Augmented Enterprise Models as Low-Code Interfaces
to Digital Systems. 343
Hans-Georg Fill, Felix Hdrer, Fabian Muff, and Simon Curty

Bridging the Gap Between Structural and Behavioral Models
in a Software-Centric Environment 353
Noél Hagemann and Bernhard Bauer

A Heuristic Technique for Project Time Analysis in Conditions
with High Uncertainty 363
Maksim Goman

ChainOps for Smart Contract-Based Distributed Applications.
Willem-Jan van den Heuvel, Damian A. Tamburri,
Damiano D ’Amici, Fabiano Izzo, and S. Potten

A Stakeholders Taxonomy for Opening Government Data
Decision-Making. e
Ahmad Luthfi and Marijn Janssen

Towards IoT-Based Transport Development in Smart Cities:

Safety and Security ASPEcts v
Ivan Garvanov, Magdalena Garvanova, Daniela Borissova,
Bojan Vasovic, and Denislav Kanev

Author Index e

Full Papers

®

Check for
updates

Extending Business Model Development
Tools with Consolidated Expert
Knowledge

Sebastian Gottschalk®), Jonas Kirchhoff, and Gregor Engels

Software Innovation Lab, Paderborn University, Paderborn, Germany
{sebastian.gottschalk, jonas.kirchhoff,gregor.engels}@uni-paderborn.de

Abstract. Business Model Innovation (BMI) is a creative process that
often needs collaboration between different stakeholders with the support
of domain experts. Instead of innovation workshops where the domain
experts need to be physically present, software-based tools allow reusing
the knowledge of many domain experts independent of their actual pres-
ence. This reusing of expert knowledge, which improves the quality of
the developed business models, is currently not supported by existing
Business Model Development Tools (BMDTs). To address this short-
coming, we present an approach to support BMDTs with consolidated
knowledge of different experts. In our approach, domain experts for-
malize their knowledge about business models for particular domains in
expert models to make them useable within and transferable between
different tools. Business developers can subsequently choose the expert
models they need, consolidate the knowledge, and use it within the BMI
process. With this approach, we provide a three-fold contribution to the
research of BMDTs: First, we design a modeling language to store the
business model knowledge of individual experts. Second, we develop a
concept to consolidate expert knowledge and detect possible knowledge
conflicts. Third, we provide blueprints to add expert knowledge into
existing BMDTs. We demonstrate the technical feasibility of our app-
roach with an open-source BMDT implementation and show the appli-
cability with an exemplary instantiation of a local event platform.

Keywords: Business domain knowledge + Business Model
Development Tool - Expert knowledge - Business Model Innovation

1 Introduction

An essential task for a company to stay competitive is the continuous innovation
of its business models, defined by Osterwalder et al. as “the rationale of how the

This work was partially supported by the German Research Foundation (DFG) within
the CRC “On-The-Fly Computing” (CRC 901, Project Number: 160364472SFB901)
and the European Regional Development Fund (ERDF, Funding Code: EFRE-
0801186).

© Springer Nature Switzerland AG 2021

B. Shishkov (Ed.): BMSD 2021, LNBIP 422, pp. 3-21, 2021.
https://doi.org/10.1007/978-3-030-79976-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79976-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-79976-2_1

4 S. Gottschalk et al.

organization creates, delivers, and captures value” [27]. The high complexity of
this task is also one of the results of the GE Innovation Barometer 2018 [15],
a study with over 2000 business executives, in which 64% of these executives
have mentioned the “difficulty to define an effective business model to support
new ideas and make them profitable” [15]. By comparing the results with a
previous study of 2015, the challenge is getting even larger (59% of over 3000
executives). An important reason for this is that customers expect solutions for
perceived needs rather than just products [34]. These perceived needs result in
the business model potentially being more important than the latest technology
of the product [6].

Proposed Approach

AN NN
(1) create Expert SV AS) VRS
Knowledge
Domain Expert Business Expert Business Expert Business
Experts Knowledge Model A Knowledge Model B Knowledge Model C
(2.1) selects Nlo Yes Yes
rExpen Knowledge > [[|
Current State \ /
rl:rl__rq;__ Knowledge
Consolidation T
(2.2) creates Company
Knowledge M | [T & —P m‘
WY AN | Conflict VAN
B Detection
<—(2.3) consolidates Knowledge and resolve Conflicts-—l Consolide}ted
Business Company Business Expert Business
Knowledge Model
DEvEEET Knowledge Model 9
support
Business Model.
Development
— —
(2.4) develops
Business Model ™ > |

Business Model

Business Knowledge Business Model
Model

Legend:
E Stakeholder

Fig.1. A Business Developer can develop better business models by building upon
existing domain knowledge provided by multiple Domain Experts

One challenge in Business Model Innovation (BMI) is that the process of BMI
is a creative task that often requires the collaboration of different internal and

Business Model Development with Consolidated Expert Knowledge 5

external stakeholders [11]. One group of these stakeholders are so-called domain
experts who provide deep knowledge in a particular domain. Instead of collabo-
rating directly with these experts, it is also possible to use their expert knowl-
edge in the form of business model taxonomies (e.g., [19,23]) or business model
patterns (e.g., [13,31]). Advantages of this expert knowledge are its cost-effect
reusability independent from the actual presence of the expert. Consequently,
software-based Business Model Development Tools (BMDTSs) and the business
developer as users can benefit from this expert knowledge to innovate their busi-
ness models. Nevertheless, this reusing of expert knowledge is not covered by
existing BMDTs in practice [33], and their underlying modeling languages [20].

In this paper, we present an approach that consolidates the knowledge of
different experts to support business model development (see Fig.1). For this
purpose, we provide a modeling structure based on the concept of feature mod-
els [3], and the Business Model Canvas [27] where Domain Experts can store
their knowledge about different business domains as shown in Fig.1 (7). The
Business Developer selects the expert knowledge (2.1) he wants to use for inno-
vating his business model. Moreover, he captures the business domain knowledge
of the company (2.2). Because the experts and the company may use different
vocabulary and contrary ideas, the knowledge of the experts needs to be con-
solidated, and conflicts in the knowledge between the experts and the company
need to be resolved. For this, we present a concept to consolidate expert and
company knowledge and detect conflicts. Out of this consolidating process, the
Business Developer receives a homogeneous knowledge base (2.3) with all knowl-
edge relevant to him. This homogeneous knowledge base, in turn, will support
him in developing new business models for his company (2.4). This can be done
by discovering business elements, suggesting business patterns, and comparing
business models.

Our approach provides a threefold contribution to the research of software-
based business model development. First, we provide a ready-to-use modeling
language for expert knowledge that can be implemented and used in existing
tools. Second, we develop concepts for the consolidation of different expert knowl-
edge and the handling of conflicts between them. Third, we provide blueprints on
how expert knowledge can support the process of business model development
in BMDTs. Moreover, we implement our concept in an open-source BMDT and
apply it with an exemplary instantiation for the development of a business model
of a local event platform.

The rest of the paper is structured as follows: Sect. 2 provides the background
in terms of business model development and feature models. Section 3 explains
the solution concept for the modeling language, the concept, and the blueprints.
Their technical implementations are shown in Sect.4. The application of the
approach is shown in Sect. 5. Section 6 presents the related work of our approach.
Finally, we conclude our paper in Sect. 7.

6 S. Gottschalk et al.

2 Background

In this section, we show the background of our work which can be divided into
the process of business model development (Sect.2.1) and the usage of feature
models (Sect. 2.2).

2.1 Business Model Development

The process of business model development is a creative task that often requires
creativity and collaboration between different stakeholders [11], together with
a deep analysis of the market, existing competitors, and potential customers
[34]. A common setting to develop new business models are workshops [14].
In these workshops, different stakeholders try to understand the current needs
of the customers and develop possible solutions, often with the help of expert
knowledge like patterns [13] or taxonomies [22].

Key Partners Key Activities Value Propositions | Customer Relation. | Customer Segments
| Hosting Provider | | Develop App | Save | Self Service | | Private User |
Privacy
I Social Networks | | Plan Marketing | B | Phone Support | |Pr0fessiona| Userl

ree
For All
Key Resources Channels
Algorithms Collaborate Facebook Ads
With Others

| Infrastructure | | LinkedIn Ads |

Cost Structures Revenue Streams
Development Costs | | Marketing Costs | | In-App Advertisements | | License Subscription |
Legend: | Canvas | Component | Element |

Fig. 2. Structure of the Business Model Canvas with Components and Elements based
on the example of a mobile to-do app

In these workshops, the structuring of insights can be supported by busi-
ness model modeling languages (BMMLs) like the e3-Value Model [16] or the
Business Model Canvas (BMC) [27]. While many languages have been developed
over the years [20], the BMC [27] is the de-facto standard for business modeling.
The BMC divides the business model into the nine components of Customer
Segments, Value Propositions, Channels, Customer Relationships, Key Activi-
ties, Key Resources, Key Partners, Revenue Streams, and Cost Structure. An
example of the BMC for the business model of a to-do app can be seen in Fig. 2.
The example consists of different customer segments (e.g., Private User) from
which money can be generated through different revenue streams (e.g., In-App
Advertisements). While, in practice, the structuring of different elements in a
single canvas is done with different colored sticky notes [12], the underlying
work [26] also introduced a Business Model Ontology (BMO) for formalizing

Business Model Development with Consolidated Expert Knowledge 7

the relationships between the different components. This, in turn, can be used
to understand the dependencies between the modeled elements. This ontology
can be directly used in an editor [12] but is also the basis for the concepts of
dynamic business models [8] and meta-modeling [24]. To cover the maturity of
the different BMMLs, Alberts et al. [1] present a meta-model for BMMLs based
on the Meta-Object Facility (MOF). Moreover, to support the modeling and
comparison of different business models, Osterwalder et al. [29] provide the idea
to model different types of business models as taxonomies so that concrete busi-
nesses can be interpreted as instances of these taxonomies. These taxonomies can
also be represented through feature models [17]. Moreover, the business model
development can be supported by software-based tools.

These software-based tools are often called Business Model Development
Tools (BMDT) and provide different guidance levels to develop new and improve
existing business models [33]. Here, earlier examples of these tools in the liter-
ature focus on the visualization of the business model [12] or simple financial
assessments [16]. An analysis of business modeling tools in practice [33] shows
that those tools focus on the design of business modeling but not on the actual
decision support. Nevertheless, a shift from simple design support of business
modeling to real decision support by these tools needs to be done [28].

2.2 Feature Models

The concept of feature models is part of Software Product Lines (SPLs) that can
be defined as “a set of software-intensive systems sharing a common, managed
set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed
way” [7]. Here, feature models are used to structure this common, managed
set of features in a hierarchical model. An example for a feature model, which
we applied to the business modeling in [17], can be seen in Fig.3. Here, the
hierarchy refines the top feature of the Canvas (e.g., Business Model Canvas)
into the sub-features of the Components (e.g., Customer Segments). Next, these
features are refined to Elements (e.g., Private User) and could be further refined
to sub-elements.

Features can be Mandatory (e.g., Value Propositions) or Optional (e.g., Cus-
tomer Segments) for the model instances. Moreover, there can be Or (at least one
sub-feature is selected/e.g., Save Privacy or Collaborate with Others), and Xor
(exactly one sub-feature is selected/e.g., Private User xor Professional User)
relationships between a parent and a child feature. To refine the model instance,
cross-tree constraints for requiring (e.g., Professional User requires to Save Pri-
vacy) and excluding (e.g., Save Privacy is excluded from Free for All) dependen-
cies can be made. A big issue in SPL development, which also exists in modeling
the expert knowledge of business models, is to find the right granularity for the
features [21].

8 S. Gottschalk et al.

Canvas | Business Model Canvas |
K “ -
]
Q
g
Component | Customer Segments | | Value Propositions | é
g _ O @) O @) :
Element BrvEE ST Professional Save Free Collaborate /
User Privacy for All With Others
T
! . A A
- = —requires— — - - excludes -
Legend: .— Mandatory O—Optional <& — - Requiring Dependency

A Or A Xor <@ » Excluding Dependency

Fig. 3. Structure of feature models with an refinement to the Components and Ele-
ments of the Business Model Canvas

3 Solution Concept

In this section, we describe the solution concept to add the support of consol-
idated expert knowledge to Business Model Development Tools. For that, we
first define a modeling language to store expert knowledge (Sect.3.1). Based on
that, we introduce concepts for knowledge consolidation and conflict detection
(Sect. 3.2) together with blueprints on how expert knowledge can be used in
BMDTs to support the development process (Sect. 3.3).

3.1 Modeling of Expert Knowledge

To allow the consolidation of expert knowledge, the Domain FExperts need to
store their knowledge into distinct Ezpert Business Knowledge Models. For this,
we use the concept of feature models [3] that we already transferred to busi-
ness modeling in the past [17]. The structure of these business models, based on
the Business Model Canvas [27], can be seen in Fig. 3. While these models can
cover the basic information of the business models, we need to cover additional
information from the domain expert to allow a reusing of the knowledge. These
additional information include knowledge about the model itself, the meaning of
the possible features and the relationships between different business model ele-
ments. Moreover, we want to store possible instance sets of the features that can
be either the elements for an exemplary company or patterns used in successful
business models.

The meta-model for storing expert knowledge can be seen in Fig.4. It con-
sists of all constraints and relationships which are previously shown in Fig. 3.
Moreover, we add additional information about the FeatureModel itself (name,
description, version, copyright) and the Author (name, company, email, website)
to give the Business Developer initial information about the Domain Ezxpert and
the application domain of the model. Additionally, we add a description to the

Business Model Development with Consolidated Expert Knowledge

Instance L[0,%] FeatureModel J—1 Author
-name: Text HO.%] -name: Text -name: Text
-description: Text -description: Text -company: Text
-version: Text -email: Text
Example 0¥ T
[E=we —o5 | 0
hasChildren [0,4]
<<enum>>] >| CrossTreeRelationship
FeatureType [0,1] Feature
Optional -featureType:
-treeRelationship:
<<enum>> TreeRelationship
TreeRelationship Supports
-description: Text
XOR Rt
o

Legend:

Feature Model Business Knowledge Extensions

Fig. 4. Meta-Model of the Business Knowledge Model which is based on feature models
and is extended with additional information

Feature to provide a uniform understanding of the feature between the Domain
Ezpert and all Business Developer who use the model. In addition to the hard
CrossTreeRelationships of Requires and Ezcludes, we add some softer constraints
in the form of Supports and Hurts as relationships between the features. These
softer constraints, which are also used in requirements engineering [35], can be
used by the Domain Ezxpert to model recommendations between the elements
(e.g., if the Business Developer considers this feature he should/should not also
consider this feature). Moreover, we explicitly model sets of these features as
Instances. Here, Patterns are describe good combination of features (e.g., com-
bining Freemium and Mass-Market for a gaming app) and Fzamples describe
used combinations by existing companies (e.g., features of the business model of
a particular gaming app). For both of them, we add a name and an additional
description to ensure an unified understanding.

3.2 Knowledge Consolidation and Conflict Detection

After the Domain FExperts have stored their knowledge into the Expert Business
Knowledge Models, the knowledge needs to be consolidated so that it can be
used by the Business Developer. For that, we are using the nine components
(e.g., Value Propositions, Customer Segments) of the Business Model Canvas
[27] as a starting point to merge the different knowledge models that the Busi-
ness Developer wants to use. From this point, we provide the Business Devel-
oper assistance in merging the elements of the business knowledge model with
the expert knowledge models into the homogeneous knowledge base. Here, the
developer can add new elements of the expert models, merge elements with the

10 S. Gottschalk et al.

same namings, and merge elements with different naming. For both of the merg-
ings, merging conflicts between the different models can occur. These conflicts
need to be detected so that the Business Developer can resolve them.

Table 1. Possible conflicts in the consolidation of knowledge models A and B

Conflict between Characteristic A | Characteristic B

Feature types Mandatory Optional

Tree relationships XOR OR

Cross-tree relationships | Requires Excludes
Supports Hurts

To detect conflicts, we analyze the model in the merging process in terms of
the conflicts mentioned in Table 1. We divide the conflicts into the three cate-
gories of Feature Types, Tree Relationships, and Cross-Tree Relationships. The
conflicts in Feature Types and Tree Relationships can be easily detected by com-
paring the single features in the merging process. The detection of conflicts in
Cross-Tree Relationships is more computation-intensive as it requires the traver-
sal of the whole feature model tree. Nevertheless, this effort is justified as faulty
Cross-Tree Relationships can lead to impossible business model instances. To
resolve the knowledge conflicts, the Business Developer can store his preferred
decisions into his Company Business Knowledge Model because these elements
will overwrite the knowledge of the Domain FExperts at the development of the
business model.

3.3 Integrating Expert Knowledge into BMDTs

After the Business Developer has selected the expert knowledge and resolved
potential conflicts, the Consolidated Expert Business Knowledge Model needs to
be integrated into the business model development process. For this, we provide
three blueprints how developers of BMDTSs could use those expert knowledge in
their corresponding tools:

— Discover Business Elements: During the design of new business models,
expert knowledge can be used as a library to discover possible business model
elements that the Business Developer can use. By providing descriptions for
all elements, the library ensures a common understanding between different
Business Developers. Moreover, expert knowledge can be used to check the
designed business model against the recommendation of experts, which sup-
ports the Business Developer in building effective business models.

— Suggesting Business Patterns: The existing expert knowledge can also be
used to suggest possible business model improvements to the Business Devel-
oper. For this, the tool can suggest possible business model patterns if parts
of the patterns are already used in the business model. Moreover, the tool

Business Model Development with Consolidated Expert Knowledge 11

can analyze the strength (modeled as support-relationship) and weaknesses
(modeled as hurt-relationship). This can support the Business Developer in
focusing on the most critical parts of the business model.

— Comparing Business Models: Finally, the Business Developer can com-
pare their designed business models with examples of expert knowledge. Here,
it is possible to directly choose competitors’ business models to analyze com-
petitive advantages by differences in the selected elements. Moreover, it is
possible to search for similar existing business models in the whole library.
These companies, in turn, can be analyzed by the Business Developer to
gather more insights for his own business.

4 Technical Implementation

In this section, we show the technical implementation of our approach. For
this, we create a ready-to-use Ezpert Business Domain Knowledge modeling
language! and integrate the concept of the knowledge consolidation together
with the blueprints in a Business Model Development Tool called BMDL Fea-
ture Modeler?.

BMDL Feature Modeler Feature Model List T

Feature Models ~ OWLLive Mobi

Author Info Merge Model List Netflix of Mobile Apps
Name First Author O Value Propositions [show Trace g @ Value Propositions A Key Partners £ Key Activities
Company HeCUniversty O Accessibilty sces: [4778 o Develop Hard-
Email 0X@H0KIK sategy of the a Select] A O s [N | o Advertisement =

- Partner
Website oo O Anonymous Access A Privacy [Update) [ar o Negotiate Licen|

o App Developer o Manage Infrast
[ORT o Depe

O simplified Sign-In Servies A For All PioduceGonte
Expert Knowledge Model of Mobile Apps or All [Update] (B
o Plan Marketing
Key Partners Key Activities O Different Devices 'y (o) ;{o{l:al{:;il‘ale Show| =
ith Others | Updd
o Hard- o Support Custo
i, S.f[:evgm Hard-and O Paid Account A B
ivertisement oftware i
O Customization Sd Key Resources
Partner |)
O Negotiate Licenses O Free Account A o Algorithms
OApp y
Developer O Manage Infrastructure o Brands 3 @0
= Netflix Original
O Content O Produce Content O Customization [show Trace 4 g
t . = Podcasts
Partner O Plan Marketing Campaigr O Personalized Add
9 pelo Recommendations [Select! & . o Content @ @1
o O Support Customer g
Instrastructure)
Providar [P S O Changeable User [Add o Instrastructure sed Contg
Decuido: =
a) Adding Expert Knowledge b) Merging Knowledge Sources c) Comparing Business Models

Fig. 5. Overview of the BMDT with examples on (a) Adding Ezpert Knowledge, (b)
Merging Knowledge Sources and (¢) Comparing Business Models

The BMDL Feature Modeler, which is shown in Fig. 5, is based on an existing
tool that we already presented in [18]. Here, we introduced the concept of com-
bining the engineering process of Software Product Lines with the structure of

! Language Specification: https://github.com/sebastiangtts/bmdl-feature-modeler/
tree/master /specification/.
2 Online Version: https://sebastiangtts.github.io/bmdl-feature-modeler/ .

https://github.com/sebastiangtts/bmdl-feature-modeler/tree/master/specification/
https://github.com/sebastiangtts/bmdl-feature-modeler/tree/master/specification/
https://sebastiangtts.github.io/bmdl-feature-modeler/

12 S. Gottschalk et al.

the Business Model Canvas to model business models. In this paper, we extend
the tool for modeling expert knowledge (see Fig.5 (a) for creating an expert
knowledge model), consolidate the knowledge models, and detect conflicts (see
Fig.5 (b) for detecting knowledge conflicts) together with the blueprint of how
the knowledge can be used (see Fig.5 (c¢) for a comparing business models). In
the following subsection, we give details on the implementations behind these
concepts. Moreover, the publish the source code of our tool® so that it is usable
and extensible by the whole information systems community.

4.1 Modeling of Expert Knowledge

The modeling of the Business Knowledge Model is based on the JavaScript
Object Notation (JSON). JSON is a lightweight file format that uses simple
key-value pairs and arrays. We use JSON as it is a wide-accepted standard for
data transmission in web applications. Moreover, the file easy to read and write
for humans and easy to parse and generate for software. To support the structur-
ing of those data, we use JSON Schema. JSON Schema? provides a vocabulary
that allows the annotation and validation of JSON documents. This standard-
ization, in turn, allows us to provide compatibility and data exchange between
different BMDTs. The JSON can be created with a graphical editor inside the
BMDL Feature Modeler (see Fig.5 (a) for creating an expert model) or any other
text editor (see Fig.6 (b) for a textual document).

A fragment of our schema and a valid model is shown in Fig.6. While the
Business Knowledge Schema (see Fig.6 (a)) provides formalization for valid
models that are based on our meta-model in Fig.4, the Business Knowledge
Model (see Fig.6 (b)) shows a possible valid model of an expert. Inside the
schema, which is based on the meta-model in Fig. 4, we define a unique identifier
together with the properties of general model information, the corresponding
author, the features of the model, and possible instances. The features, which
are nested in each other, have an identifier, a name, properties, and relationships
to other features (based on their identifiers). The instances have a name, a type
(example or pattern), and a list of feature identifiers the instance is using. While
the modeling is possible within our tool, the full schema and exemplary model
together with a detailed explanation can be accessed in our repository.

4.2 Knowledge Consolidation and Conflict Detection

After modeling the expert knowledge, we need to consolidate this knowledge with
the business knowledge to make it usable within the business model development
process. For this, we need to merge the features and relationships of both models
(see Fig.5 (b) for merging the business knowledge and the expert knowledge).
Instead of physically merging those features, we create virtual trace links between
the models in the BMDL Feature Modeler. Virtual trace links are additional links

3 Source Code: https://github.com/sebastiangtts/bmdl-feature-modeler/.
4 Website of JSON Schema: https://json-schema.org)/.

https://github.com/sebastiangtts/bmdl-feature-modeler/
https://json-schema.org/

Business Model Development with Consolidated Expert Knowledge 13

"$schema": "https://json-schema.org/draft/20] "name": "ToDo List Knowledge",
"$id": "http://github.com/...", "description”: "Knowledge from the analy|
"title": "Business Knowledge Model Schema De{ "author": {
"description”: "This schema defines the supp "name": "First Author",
"properties”: { "email": "first-author@university.tl]
"name": { ¥,
"description": "Name of the Business| "features": {
"type": "string" "value-propositions™”: {
3, "name": "Value Propositions"”,
/], "type": "mandatory",
"features": { "subfeatures": {
"description”: "The list of features //...
"type": "object", }
"additionalProperties": { 1,
"$ref": "#/definitions/feature" /...
} b
}, "instances": [
"instances": { {
"description”: "The list of patterns "name": "Todoist",
"type": "array", "description”: "Todoist as a pre
"items": { "type": "example",
"$ref": "#/definitions/instance” "usedFeatures": [
¥, "private-user",
"uniqueItems": true "facebook-ads",
a) Excerpt of the Business Knowledge Schema b) Excerpt of the Business Knowledge Model

Fig. 6. Excerpts of the Business Knowledge Schema and developed Business Knowl-
edge Model based on code snippets

between both knowledge bases. This, in turn, simplifies adding, modifying, and
removing the different expert models. An example of using these trace links can
be seen in Fig. 7. While in this section, we describe the merging of the Business
Knowledge Model with a single Ezxpert Business Knowledge Model, the steps
can be repeated for every other Expert Business Knowledge Models to create a
homogeneous knowledge base.

At the beginning of the step, all nine Components of the models are auto-
matically merged because they exist in both models (see Customer Segments
in Fig. 7). After that, the Business Developer manually selects the Elements he
wants to use. If the Element does not exist within the Company Business Knowl-
edge Model, it can directly be added to the hierarchy of the model (see removing
of One-Sided Market in Fig.7). Otherwise, the attributes (Type, TreeRelation-
ship) of both Elements need to be compared to detect possible conflicts. More-
over, the Business Developer can link Flements of the Fxpert Business Knowl-
edge Model directly to Elements of the Business Knowledge Model. This is used
to overcome the restrictions of the hierarchy and merge equal Flements with
different namings (see trace link from Private User to User in Fig.7). After
all Elements have been added to the Company Business Knowledge Model, the
Business Developer also needs to add the CrossTree-Relationships between both
models. Here, we need to check all CrossTree-Relationships where both FEle-

14 S. Gottschalk et al.

| Company Business Knowledge Model | | Expert Business Knowledge Model |
| Customer Segments |- —————————— Customer Segments
| Private User | | Professional User ne -Sided Market Two-Sided Market
I ' (/(g
L = — | Supplier User
L.._.._.._.._.._.._.._.._.._..4
Legend: [] Remered Automatic
Element -=-) .- Manual
Element ~ Tracelink = Tracelink

Fig. 7. Example of the Knowledge Consolidation based on Automatic and Manual
Trace Links

ments are merged with the Business Knowledge Model for potential conflicts
(e.g. conflict of hurts- and supports-relationships). To avoid following cycles in
the CrossTree-Relationships, the whole traversing of the model is needed. The
whole step, which is used for a single expert model, is now repeated for all expert
models.

4.3 Integrating Expert Knowledge into BMDTs

After consolidating the knowledge of the different experts, we have a single
Business Knowledge Model, which can be used to support the business model
development process. For this, we have conceptualized three different blueprints
in the last section.

In Discover Business Elements, we want to show the business developer the
business elements he can use. For that, we provide at each component and ele-
ment a button to open a list of subfeatures with a name and explanations.
Moreover, we check the business model against the relationships in the Business
Knowledge Model to show conformance errors between both.

In Suggesting Business Patterns, we want to suggest business model improve-
ments to the developer. For that, we compare the elements in the patterns with
the elements in the business models to show existing patterns and provide recom-
mendations for patterns where single elements are missing. Moreover, we high-
light strengths and weaknesses in the business model according to the hurts- and
supports-relationships.

The last blueprint is Compare Business Models, where we compare our own
business model with other business models based on a heatmap (see Fig. 5 (c) for
a comparing business models). For that, we provide Algorithm 1 to calculate the
distance between the features sets OF (Own Features) and CF' (Comparison Fea-

Business Model Development with Consolidated Expert Knowledge 15

Algorithm 1. Comparison of different business models

1: function COMPAREMODELS(FM,OF,CF) > Compare Business Models
2 similarityCounter, similarityScore < 0
3 for feature in FM.features do
4 similarityScore «— COMPAREFEATURE(feature, OF, C'F')
5: stmilarityCounter «— similarityCounter + similarityScore
6 print feature.name+*“: " +similarityScore > Component Similarity
7 end for
8 print “Business Model Canvas: "+ similarityCounter/9 > Canvas Similarity
9: end function
10:
11: function COMPAREFEATURE(F, OF,CF) > Compare Business Elements
12: stmilarityCounter, similarityScore, featureCounter «— 0
13: for subfeature in F.subfeatures do
14: if subfeature in OF and subfeature in CF then
15: featureCounter «— featureCounter + 1
16: similarityScore «— 0.54+0.5x COMPAREFEATURE(subfeature, OF, CF)
17: similarityCounter «— similarityCounter + similarityScore
18: print subfeature.name+*“: " +similarityScore > Element Similarity
19: else if subfeature in OF or subfeature in CF then
20: featureCounter «— featureCounter + 1
21: end if
22: end for
23: return featureCounter > 0 ? similarityCounter/ featureCounter : 1

24: end function

tures) based on a feature model FM. In COMPAREMODELS(FM,OF,CF),
we sum up the similarities of each component to get the overall similarity of the
business models. In COMPAREFEATURE(F, OF,CF), we compare the sim-
ilarity of a single feature with all its subfeatures. Here, we halved the similarity
weight in each hierarchy level because elements in lower levels are less important
than the upper ones.

5 Application to Local Event Platform

In this section, we show how the approach can be applied to a concrete usage
scenario. For this, we first instantiate our approach on top of business models
for a local event platform (Sect.5.1) and second discuss the current limitations
of the approach (Sect.5.2).

5.1 Instantiation

We show the applicability of our approach by providing an instantiation on
OWL Live. OWL Live is a local event platform created in the OWL culture
portal’s research project®. This research project aims to establish a local area

5 Project Website: https://www.sicp.de/en/projekte/owlkultur-plattform.

https://www.sicp.de/en/projekte/owlkultur-plattform

16 S. Gottschalk et al.

event platform that the project partners should sustainably operate. The value
of the platform is to aggregate event information from different sources based
on machine learning algorithms. OWL Live is a two-sided market between event
providers and event visitors that both have to be considered during business
model development. At the beginning of the instantiation, we interview the
responsible project manager to gather information about the platform. Accord-
ing to Teece [34], we ask questions about the market, the possible competitors,
and the own niche. After the interview, we use the information to create differ-
ent Expert Business Knowledge Models and the Company Business Knowledge
Models. After consolidating that knowledge, we derive three possible Business
Models for the platform.

We use the Fxpert Business Knowledge Models to store the information about
the market and the possible competitors. For the market, we first cover mobile
applications in general. Here, we use our existing feature model for business mod-
els of mobile applications as introduced in [17]. Because the model allows just
standard feature models relationships, we add hurts- and supports-relationships
(e.g., In-App Ads hurts Privacy) to the model. Moreover, we add existing pat-
terns (e.g., Low-Price Strategy) and the existing models as examples (e.g., Spo-
tify) to the model. After that, we create additional expert models for application
fields related to the platform’s concept. We gather our information by analyzing
the business model of a subset of existing companies in that field. The ana-
lyzed fields were content aggregations (e.g., Rotten Tomatoes), which aggregate
content from different sources, social media networks (e.g., Instagram), which
provide interactions of a mass amount of users, and trending apps (e.g., Club-
house), which should provide us information about current usage trends. For
the possible competitors, we analyze event apps (e.g., Eventim), which act in a
broader range than the platform, and local competitors (e.g., local newspaper),
which provide an alternative to the usage of the platform. In total, we created
six expert knowledge models.

We use the Company Business Knowledge Model to store information about
the niche that the platform should have. This information is mostly obtained
from the project manager. It contains ideas for specialized customer segments
(e.g., culture enthusiasts), new customer relationships (e.g., customer contact
over culture offices), new revenue streams (e.g., usage of sponsorships), and
enhanced value propositions (e.g., route approximation to event).

After consolidating that knowledge, we use it to derive three different Busi-
ness Models. First, we derive a type of content aggregator, where a mass amount
of local events is crawled to gain interest for a mass market of users. Based on
that, revenue streams of personalized advertisements and affiliate links to exist-
ing ticket sellers could be established. Second, we derive a type of ticker seller,
where the focus is mainly on small local events. The customer relationships could
be arranged personally, and a commission fee could generate revenue. Third, we
derive a type of sponsored platform, where revenue is gained from private and
public sponsorships. Based on that, value propositions of privacy-friendly usage
and independent prioritization could be established. Using our tool, all devel-

Business Model Development with Consolidated Expert Knowledge 17

oped business models can be directly compared to the event app and the local
competitors to analyze a competitive advantage.

5.2 Discussion

With the implementation and its instantiation, we show the applicability of
our approach. Nevertheless, while conducting the instantiation, we found some
limitations with respect to the Business Knowledge Generalization, the Business
Process Modeling and the Instantiation Restrictions.

For the Business Knowledge Generalization, we currently based our Busi-
ness Knowledge Model on the Business Model Canvas (BMC). While the BMC
is widely used for business model innovation, other canvas structures support
other steps of the innovation process (e.g., Value Proposition Canvas for iden-
tifying the needs of the customer) or special types of business models (e.g.,
Platform Canvas for platform business models). Therefore, we want to improve
our Business Knowledge Model by supporting freely definable canvas structures
in the future.

For Business Process Modeling, we currently allow the execution of steps of
the innovation process (e.g., adding expert knowledge, develop business model)
concurrent with each other, which increases the complexity of the approach.
Moreover, it provides the business developer less guidance about methods to
derive the knowledge of the business knowledge model. Therefore, we want to
extend our approach by providing a stepwise creation and validation of business
models.

For Instantiation Restrictions, we applied our approach to the development
of business models of a local event platform. Although this allowed us to demon-
strate and evaluate all steps of our approach, it has the limitation that we com-
bined the domain expert and the business developer in one person. This results in
less knowledge to consolidate and conflicts to detect. Therefore, we want to con-
duct workshops where business developers must use existing expert knowledge
to validate our approach further.

6 Related Work

In this section, we show the related work of our approach. We divide this work
into Knowledge Modeling and Business Model Development Tools.

In the area of Knowledge Modeling, current languages for business modeling
do not support the meta-modeling of business model knowledge [20]. Therefore,
we look into the similar topic of requirements engineering which also provides the
foundation for feature models. In goal-oriented requirements engineering [35], the
different user needs are modeled as goals with relationships between them. Here,
languages like iStar [9] or KAOS [35] provide different semantic relationships like
decompositions and contributions types (e.g. help, hurt) between the goals to
structure them. Because these requirements can come from many sources, tools
for requirements consolidation have already been developed [25]. Moreover, this

18 S. Gottschalk et al.

consolidation is also used in Software Product Lines with the merging of feature
models [2]. Nevertheless, these approaches are built for requirements engineering
and cannot directly be transferred to the different contexts of business modeling
(e.g. modeling business pattern). Moreover, they are not used to reuse gained
expert knowledge.

In the area of Business Model Development Tools, current tools in practice
do not support the usage of expert knowledge [33]. Therefore, we look into
current research which mostly develops design principles for future BMDTs.
The Business Model Assistance System [10] uses a reference database of existing
business models for comparison with the own business model. The Business
Model Developer [5] is a domain-specific approach with a shared vocabulary
based on a taxonomy and uses semantic relationships between the elements
for financial calculations. The concept of semantic relationship is also used by
Business Model Analyzer [4] to support the business model comprehension. The
Green Business Model Editor [32] uses existing schemas to provide patterns for
sustainable business models. The idea of the sustainable business pattern, which
is modeled through a taxonomy, is also implemented by the Smart Business
Modeler [22]. The Computer-Aided Business Model Design [30] introduces a
concept for bringing different business developer experience levels into account.
Here, novices are supported in coherent modeling, experts model the interactions
of business model elements, and masters aim to evaluate different business model
alternatives. Nevertheless, these approaches are made for knowledge models that
are made by a single expert and do not support multiple knowledge sources and
a corresponding knowledge consolidation.

7 Conclusion and Outlook

Business model innovation is a creative task that often requires the external
knowledge of experts. While this expert knowledge is easily accessible in work-
shops, current BMDTs do not support reusing this knowledge. This expert
knowledge, in turn, could improve the quality of the developed business models.
In this paper, we present an approach to consolidate the knowledge of different
experts to support the business model innovation process. With our approach,
different domain experts can model their expert knowledge based on a ready-
to-use modeling language. Business developers, in turn, can model the company
knowledge and consolidate that knowledge with expert knowledge. This consol-
idated knowledge can then be used in various ways during the business model
development. For this, we develop different blueprints to extend existing business
model development tools. We implement the whole approach in an open-source
tool and show the applicability with an exemplary instantiation for a local event
platform.

Our future work is threefold and deals with improving the current limitations
in the discussion of our instantiation. First, we want to improve the current
limitations in terms of business knowledge generalization by providing support
for different canvas structures. This will ensure a broader usage of the modeling

Business Model Development with Consolidated Expert Knowledge 19

language and tooling. Second, we want to improve business process modeling
by providing stepwise execution methods for developing and validating business
models. This will provide business developers additional support in the business
model development. Third, we want to work on the instantiation restrictions
by conducting workshops with business developers to derive their own business
models. This will increase the validity of our approach in real-life settings.

References

1. Alberts, B.T., Meertens, L.O., Iacob, M.-E., Nieuwenhuis, L..B.J.M.: A meta-model
perspective on business models. In: Shishkov, B. (ed.) BMSD 2012. LNBIP, vol.
142, pp. 64-81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
37478-4.4

2. Alves, V., et al.: An exploratory study of information retrieval techniques in domain
analysis. In: 12th International Software Product Product Line Conference (SPLC),
pp. 67-76. IEEE (2008)

3. Apel, S., Batory, D., Késtner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37521-7

4. Augenstein, D., Fleig, C., Maedche, A.: Development of a data-driven business
model transformation tool. In: Chatterjee, S., Dutta, K., Sundarraj, R.P. (eds.)
DESRIST 2018. LNCS, vol. 10844, pp. 205-217. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-91800-6_14

5. Boflelmann, S., Margaria, T.: Guided business modeling and analysis for busi-
ness professionals. In: Pfannstiel, M.A., Rasche, C. (eds.) Service Business Model
Innovation in Healthcare and Hospital Management, pp. 195-211. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-46412-1_11

6. Chesbrough, H.: Business model innovation: it’s not just about technology any-
more. Strategy Leadersh. 35(6), 12-17 (2007)

7. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, 7th
edn. Addison-Wesley, Boston (2009)

8. Cosenz, F., Noto, G.: A dynamic business modelling approach to design and exper-
iment new business venture strategies. Long Range Plan. 51(1), 127-140 (2018)

9. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide (2016)

10. Di Valentin, C., Emrich, A., Werth, D., Loos, P.: Business modeling in the soft-
ware industry: conceptual design of an assistance system. In: Harmsen, F., Proper,
H.A. (eds.) PRET 2013. LNBIP, vol. 151, pp. 34-45. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38774-6_3

11. Ebel, P., Bretschneider, U., Leimeister, J.M.: Leveraging virtual business model
innovation: a framework for designing business model development tools. Inf. Syst.
J. 26(5), 519-550 (2016)

12. Fritscher, B., Pigneur, Y.: Supporting business model modelling: a compromise
between creativity and constraints. In: England, D., Palanque, P., Vanderdonckt,
J., Wild, P.J. (eds.) TAMODIA 2009. LNCS, vol. 5963, pp. 28-43. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-11797-8_3

13. Gassmann, O., Frankenberger, K., Csik, M.: The Business Model Navigator: 55
Models that Will Revolutionise Your Business. Pearson, Harlow (2014)

14. Geissdoerfer, M., Bocken, N.M., Hultink, E.J.: Design thinking to enhance the
sustainable business modelling process - a workshop based on a value mapping
process. J. Clean. Prod. 135, 1218-1232 (2016)

https://doi.org/10.1007/978-3-642-37478-4_4
https://doi.org/10.1007/978-3-642-37478-4_4
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-319-91800-6_14
https://doi.org/10.1007/978-3-319-91800-6_14
https://doi.org/10.1007/978-3-319-46412-1_11
https://doi.org/10.1007/978-3-642-38774-6_3
https://doi.org/10.1007/978-3-642-11797-8_3

20

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

S. Gottschalk et al.

General Electric Inc: GE Global Innovation Barometer 2018. https://www.ge.com/
reports/innovation-barometer-2018/

Gordijn, J., Akkermans, H.: Designing and evaluating e-business models. IEEE
Intell. Syst. 16(4), 11-17 (2001)

Gottschalk, S., Rittmeier, F., Engels, G.: Intertwined development of business
model and product functions for mobile applications: a twin peak feature mod-
eling approach. In: Hyrynsalmi, S., Suoranta, M., Nguyen-Duc, A., Tyrvainen,
P., Abrahamsson, P. (eds.) ICSOB 2019. LNBIP, vol. 370, pp. 192-207. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33742-1_16

Gottschalk, S., Rittmeier, F., Engels, G.: Hypothesis-driven adaptation of business
models based on product line engineering. In: International Conference on Business
Informatics (CBI). IEEE (2020)

Hartmann, P.M., Zaki, M., Feldmann, N., Neely, A.: Capturing value from big data
- a taxonomy of data-driven business models used by start-up firms. Int. J. Oper.
Prod. Manag. 36(10), 1382-1406 (2016)

John, T., Kundisch, D., Szopinski, D.: Visual languages for modeling business
models: a critical review and future research directions. In: Proceedings of the
38th International Conference on Information Systems (ICIS). AIS (2017)
Kastner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines.
In: 13th International Conference on Software Engineering (ICSE), p. 311. ACM
(2008)

Liideke-Freund, F., Bohnsack, R., Breuer, H., Massa, L.: Research on sustain-
able business model patterns: status quo, methodological issues, and a research
agenda. In: Aagaard, A. (ed.) Sustainable Business Models. PSSBIAFE, pp. 25—
60. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93275-0_2
Liideke-Freund, F., Carroux, S., Joyce, A., Massa, L., Breuer, H.: The sustainable
business model pattern taxonomy—45 patterns to support sustainability-oriented
business model innovation. Sustain. Prod. Consumption 15, 145-162 (2018)
Meertens, L.O., Iacob, M.E., Nieuwenhuis, L., van Sinderen, M.J., Jonkers, H.,
Quartel, D.: Mapping the business model canvas to ArchiMate. In: Proceedings of
the 27th Annual ACM Symposium on Applied Computing (SAC). ACM (2012)
Nagappan, M., Shihab, E.: Future trends in software engineering research for
mobile apps. In: 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pp. 21-32. IEEE (2016)

Osterwalder, A.: The Business Model Ontology: A Proposition in a Design Science
Approach. Dissertation, University of Lausanne, Lausanne (2004)

Osterwalder, A., Pigneur, Y.: Business Model Generation: A Handbook for Vision-
aries, Game Changers, and Challengers. Wiley, Hoboken (2010)

Osterwalder, A., Pigneur, Y.: Designing business models and similar strategic
objects: the contribution of IS. J. Assoc. Inf. Syst. 14(5), 237-244 (2013)
Osterwalder, A., Pigneur, Y., Tucci, C.L.: Clarifying business models: origins,
present, and future of the concept. Commun. Assoc. Inf. Syst. 16 (2005)
Pigneur, Y., Fritscher, B.: Extending the business model CanvasA dynamic per-
spective. In: Proceedings of the Fifth International Symposium on Business Mod-
eling and Software Design, pp. 86-95. SCITEPRESS (2015)

Reman, G., Hanelt, A., Tesch, J., Kolbe, L.: The business model database - a tool
for systematic business model innovation. Int. J. Innov. Manag. 21(01) (2017)
Schoormann, T., Behrens, D., Knackstedt, R.: Design principles for leveraging
sustainability in business modelling tools. In: Twenty-Sixth European Conference
on Information System. AIS (2018)

https://www.ge.com/reports/innovation-barometer-2018/
https://www.ge.com/reports/innovation-barometer-2018/
https://doi.org/10.1007/978-3-030-33742-1_16
https://doi.org/10.1007/978-3-319-93275-0_2

33.

34.

35.

Business Model Development with Consolidated Expert Knowledge 21

Szopinski, D., Schoormann, T., John, T., Knackstedt, R., Kundisch, D.: Software
tools for business model innovation: current state and future challenges. Electron.
Mark. 60(11), 2794 (2019)

Teece, D.J.: Business models, business strategy and innovation. Long Range Plan.
43(2-3), 172-194 (2010)

van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
International Symposium on Requirements Engineering, pp. 249-262. IEEE (2001)

)

Check for
updates

Disruption and Images of Organisation

Coen Suurmond ®

Cesuur B.V., Velp, The Netherlands
coen@cesuur.info

Abstract. The short answer to the question “what is needed to make enterprises
and software less vulnerable against disruptive events?” is: eliminate the disrup-
tive character of events. Disruption, defined as a violent dissolution of continuity
(OED), is not a property of an event as such, but is about the disruptive effect that
some events can have on enterprises or software systems. The better enterprises
and their systems are able to deal with disturbances in their environments, the less
they will be disrupted. How enterprises are viewed and organised is important
in this regard. One view is to approach enterprises as machines, cf. the concept
of enterprise engineering. Viewed as a machine, an enterprise will be modelled
and structured as primarily driven by events causing sequences of predefined pro-
cesses. Another view is the enterprise as an organism, flexibly acting to achieve
its goals, using instruments and adapting to never fully predictable circumstances.
This paper will argue that enterprises seeing and structuring themselves along the
organism metaphor will be less vulnerable than enterprises seeing and structuring
themselves along the machine metaphor.

Keywords: Disruption - Organisation metaphor - Semiotics - Final causation -
Business modelling

1 Introduction

Organisations operate in environments that are exhibiting recurring patterns of behaviour,
sometimes interrupted by irregular events, possibly disruptive. Process efficiency
requires standardisation and is focused on dealing with the regular patterns. Exceptions
to the regular patterns can disturb the processing flows because the normal processing
rules are not applicable and/or they result in irregular outcomes that affect downstream
processes. Vulnerability of organisations to disruption is linked to its capability for pro-
cessing exceptional situations. The subject of this paper is how the way organisations
see and structure themselves impacts their vulnerability for disruption.

In exploring this question, theories and metaphors will be discussed first. The dis-
cussion starts with semiotics and the process of creating meaning in problematic cir-
cumstances; followed by an examination of the essential business nature of the firm
and the role of signs and sign systems in organisational information systems. The next
section discusses the machine and organism metaphor for the organisation, and two dif-
ferent concepts of causality that are implicated by those metaphors. The two theoretical
sections are followed by two section oriented on business practice. Examples will be

© Springer Nature Switzerland AG 2021
B. Shishkov (Ed.): BMSD 2021, LNBIP 422, pp. 22-39, 2021.
https://doi.org/10.1007/978-3-030-79976-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79976-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-79976-2_2

Disruption and Images of Organisation 23

provided first of coping with disturbance in real-world situations; this is followed by a
discussion of some principles for business modelling and the development of enterprise
information systems. A concluding section ends the paper.

2 Demarcation

It is good to draw a few lines first, making clear what this paper is about, and what
not. First of all, business as such and society in which business is embedded are out
of scope. Disruptive events, either of biological character (COVID-19) or of political
character (Brexit), are “just happening” from the viewpoint of this paper. Information
specialists are not tasked to change business and even less to change society, they are
tasked to develop instruments (information systems) that support business processes in
the context of society.

That being said, it should be clear that the development of information systems that
are both useful and reliable requires an understanding of the circumstances in which
such systems could be used. Robert Musil wrote in the Man without Qualities: “If there
is a sense of the real, then there must be a sense of the possible”. Musil continues by
telling us that someone endowed with a sense of the possible will not be engaged with
what has happened, will happen or must happen, but he will be imagining what could
happen [1]. Such “possibility thinking” should be part of the understanding that an
information specialist develops in analysing business processes, should be represented
in business modelling and must be part of the considerations in software design. Why
this is necessary, and how to approach these issues, will be subject of this paper.

In this paper I will not differentiate between “unforeseen” and “unforeseeable”
events. As an escape from accountability it is a fairly common human trait to dub
unforeseen events as unforeseeable. An example is the reaction of many politicians to
the COVID-19 pandemic. They pictured this threat as unforeseeable (“nobody could
have expected this”’) while this threat was perfectly described in previous years. Exam-
ples from 2018 are an article entitled The Next Plague published in The Atlantic and
also a description of the influence of a flu pandemic on business continuity in a book
about risk management [2, 3]. However, as business as such and society are out of scope
in this paper, and also because preparation for all possible foreseeable disruptive events
is simply not economically feasible, this distinction between unforeseen and unforesee-
able will not be made in this paper. The challenge for business modelling is to represent
the business processes in such a way that it helps business to shape their reaction to
unforeseen events (regardless whether they could have been foreseen), and to design
software systems in such a way that unexpected events will have only local effects and
will not lead to the breakdown of whole systems, business processes, and business itself.

3 Theories

3.1 Semiotics

Semiotics is the study of signs. The modern semiotic tradition that started with Peirce
is essentially about the study of using signs in the world, as opposed to the structuralist

24 C. Suurmond

tradition studying relations between signs in a linguistic system [4]. An often cited
Peircean definition of the sign is “A sign, or representamen, is something which stands
to somebody for something in some respect or capacity” [5]. This definition suggests
the role of context in the interpretation of a sign, the same sign can stand for different
things, depending on both the “somebody” and the “respect or capacity” involved. An
example: where the haulier perceives a wrapped pallet as a physical unit to be transported
(content not of interest), a producer perceives product in crates (packaging not of prime
interest), and a fire insurer perceives packaging material that is either combustible wood
or incombustible plastic. Another example: the Serial Shipping Container Code is just a
unique reference number without further meaning for the purpose of electronic exchange
of logistical data, a domain expert can derive additional information such as country and
producer of origin of the shipping unit.

Barend van Heusden has taken this idea further in his article Trias Semiotica [6]. He
analyses signs as consisting of “a form we perceive, the meaning or content it conveys,
and the object it is about”, and thus differentiates between the sign-as-a-process and the
sign-as-a-form. The latter is something physical that we perceive (either conventional
codes such as letters and digits, physical artefacts such as pallets and crates, cultural
artefacts such as music or paintings, or natural objects such as smoke and footprints), the
former is the action of interpreting something as sign in a context. Meaning is “not a thing,
but something we do [...] is active, it is an event, it is work — meaning is in the making”.
A further essential element in Van Heusden’s semiotics is the analysis of the difference
between the generality of the form and the individuality of the object. “A distinctive trait
of the human brain resides in the way in which it processes perceptual information [...]
Perceptual stimuli can be processed simultaneously, and in parallel, by two (sub)systems
[...] Together the two systems are responsible for the deeply dialectical nature of human
cultural cognition and for our experience of reality as being always different from what
we already know”. In perception, we can be simultaneously processing the situation as
an example of something we already know, and as an individual case. We perceive blue
plastic pallets as belonging to some pallet pool, to be collected and returned to some
depot. In the process of collecting and stacking emptied pallets we will just perceive
“pallets”, not being aware of either material or colour, and put them on their stack.
However, when we must distinguish between pallets of different owners, marked by a
grey or blue colour, we will be aware of the vague bluish-greyish colour of an individual
pallet. Once we have decided about the colour of the pallet, the pallet is classified and
stacked as either blue or grey and the problem is solved. This example brings us to a
third major point in the theory. In an unproblematic situation a general form is coupled
to a typical action (stacking of pallets without a further thought). The form causes a
reaction, it works out as a signal. Van Heusden writes “A signal is a form that calls
for a reaction which can be innate, or learned. But it lacks aboutness and, as such, it is
not a semiotic phenomenon. ... Aboutness is what distinguishes signs from signals, and
the semiotic from stimulus-response reactions”. To recapitulate the three points above
in one sentence: interpretation is triggered by the awareness of the difference between
general form and individual perception (both simultaneously present in perception), and
is about the response (action) to the problematic perception in a given context.

Disruption and Images of Organisation 25

T.L. Short has analysed Peirce’s semiotics and process philosophy in his book enti-
tled Peirce’s Theory of Signs [7]. Short discusses how Peirce used and adapted the
Aristotelian concepts of efficient causation (think of the collision of billiard balls and
Newtonian mechanics) and final causation. For Peirce, final causation does not require
intention or purpose (think of “blind” directed and irreversible processes such as in ther-
modynamics and in Darwinian evolution theory). Interpretation, taken as a response to
a sign, is taken as essentially a purposeful action. Interpretation is partly determined
by a conventional reaction to the sign as “standing for an object” (this part could be
called a causal reaction), and partly determined by an intentional movement towards a
future state (this part could be called final causation because that intended future state
explains the action). This approach to interpretation matches very well the description
of an organism by Peirce’s contemporary Wheeler (see further discussion below).

Routine processes exhibit mostly habitual reactions to predefined situations. In non-
routine situations we notice a difference between an automatic and a human response. An
algorithm would have no other possibility than to apply predefined rules automatically
to the situation, reducing the situation to a predefined form and reacting accordingly. The
sign is reduced to a signal triggering a predefined (habitual) response. The individuality
of the problematic object is lost (note: machine learning is about developing the general
rule, and not about awareness of the individuality of the case). A knowledgeable human
would interpret the situation and choose an action accordingly, possibly creating new
meaning.

3.2 Theory of the Firm

The raison d’étre of the company is its capability to produce products (including services)
for its customers at a healthy margin. The function of the primary business processes is
to bring forth those products in an efficient and effective way. Non-primary processes
manage and facilitate the primary processes, or are managing relations, markets, products
or resources. Business processes are structured in both a formal and an informal way,
contributing to the efficiency and effectiveness of the processes. What is stated above for
companies, can also be applied to governmental organisations, mutatis mutandis: their
raison d’étre is to serve the citizens, they have internal processes to provide meaningful
products or services for the citizen in combination with managing processes, and the
combination of formal organisational and informal habits structure the internal processes.

In the 1950s Arrow and Debreu proved mathematically the effectiveness of com-
petitive markets, working in the tradition of classical economics. Some decades before
Coase asked the question why firms would be able to exist, when the market would
provide optimal solutions for all economic exchanges [8]. The difference between the
neoclassical assumption of competitive markets and Coase’s approach is that the former
leaves out the cost of information required for trading on markets. As Coase writes:
“The main reason why it is profitable to establish a firm would seem to be that there
is a cost of using the price mechanism”. Transactions between the firm and its envi-
ronment (customers, suppliers, employees) are mostly based on longer term contracts.
This avoids the cost of settling a separate contract for each and every exchange. After
Coase’s critique on the fiction of optimal markets, McNeil attacked the fiction of fully
specified legal contracts. He argued that all legal contracts are to some degree relational

26 C. Suurmond

contracts [9, 10]. A contract is a formalised representation of a business agreement,
specifying promises of the business partners to each other to deliver something at some
point in the future. When the agreement is challenged and the contract parameters are
discussed (either directly between the business partners or in court), the interpretation
of the language in the contract is open for discussion, and, much more importantly, the
contract parameters are discussed against the background of the original intentions of
the business partners in relation to the possible change of relevant circumstances. The
concept of the relational contract is central in the work of John Kay in analysing firms.
Mentioning relationships of the firm with business partners, employees, governments
and competitors Kay writes: “It is the totality of these relationships which defines the
individual firm and creates its distinctive identity” [11]. In another book Kay writes
about the Arrow-Debreu model that “it is a framework for understanding more clearly
the nature of competitive markets, not a description of a complex modern economy”
[12].

Real world business is not about spot-exchanges in an ideal market where all relevant
information is readily available, but about enduring social commitments and their ful-
filment under sometimes difficult circumstances. Fulfilment of the business agreements
requires that all relevant information about those agreements should be available for busi-
ness processes, e.g. whether a certain customer attaches more importance to delivery
on time (but incomplete) or to a complete delivery (but late). To a high degree business
agreements are standardised and a few parameters are sufficient (Who? What? When?
Amount? Price?), but their fulfilment requires additional “soft” information for process-
ing whenever applicable (e.g.: atypical terms and conditions, awareness of customer
habits and values, atypical circumstances).

3.3 Information, Signs, Information Systems

Information is carried by signs (Stamper 1973 [13]). Semiotics differentiates between the
sign itself (which is directly perceived), what is stands for (its absent object), and what it
does (its interpretation, its meaning in the context in which the sign is perceived. Signs
belong to sign systems. Sign systems are either social or formal (other classifications are
possible of course). Social sign systems come into being by practical use in the social
world, with emerging rules, conventions, habits. Formal sign systems are defined by a
formally defined set of operators and syntax (e.g. Jensen & Wirth, Pascal User Manual
and Report [14]). Formal sign systems are closed, social sign systems are open. In social
sign systems meaning is open for interpretation and debate, and sensitive to its use in
context (striving towards some future state, considering social values). Habermas’ theory
of communicative action is based on the open character of social sign systems [15, 16],
IT systems are examples of closed formal sign systems [14].

IT systems are embedded in the social world, and its users can be creative. When a
customer orders “everything you’ve got”, there is no equivalent sign available in the IT
system. Human convention, however, quickly settles such issues by inputting “99999”
as ordered amount, and everyone in the organisation knows this means “everything”.
The IT system, being a formal sign system devoid of meaning, might later on classify
the fulfilment of such orders as deficient because the customer did not get the 99999
pieces he had ordered.

Disruption and Images of Organisation 27

Enterprise information systems are tasked with supporting the business and the busi-
ness processes with relevant information. Much information can be categorised in gen-
eral form and processed automatically; natural language is required for periodic routine
information exchanges in face-to-face meetings as well as ad-hoc encounters where
problematic situations needing mutual adjustment are considered. Enterprise informa-
tion systems should organise multiple information channels, both natural language based
and IT-based. The need for such multiplicity of information channels was recognised in
the early ‘80’s of last century in the seminal paper on the Language Action Perspective
approach by Goldkuhl and Lyttinen where they wrote “the formal and closed nature of
information systems implies a need for information channels side by side the formalized
information systems” [17], but the LAP approach seems not to have followed up on this.

4 Metaphors: Organisation as Machine or as Organism?

4.1 Gareth Morgan: Images of Organisation

In his well-known book “Images of Organization” Gareth Morgan analysed the nature
of the metaphor and its role in the understanding of organisation and management [18].
Morgan writes that “the use of metaphor implies a way of thinking and a way of seeing that
pervade how we understand our world generally” (italics in the original), that metaphor
“in highlighting certain interpretations [...] tends to force others into a background role”
and that “metaphor always creates distortions” (italics in the original). Morgan points out
that he will not present an exhaustive list of metaphors of organisation, for there is no limit
to finding images usable as metaphor. He does discuss eight images: machine, organism,
brain, culture, political system, psychic prison, flux & transformation, instrument of
domination. For analysis of the impact of disruption on organisations, I will focus on
the images of the machine and the organism.

4.2 Machines

Morgan writes “Anyone who has observed work in the mass-production factory or in
any of the large “office factories” processing paper forms such as insurance claims, tax
returns, or bank checks will have noticed the machinelike way in which such organi-
zations operate [...] employees are in essence expected to behave as if they were parts
of a machine” [18]. He discusses both Taylor’s assembly line and Weber’s bureaucracy
in his history of the machine metaphor, and mentions that in Weber’s work “we find
the first comprehensive definition of bureaucracy as a form of organization that empha-
sizes precision, speed, clarity, regularity, reliability, and efficiency achieved through the
creation of a fixed division of tasks, hierarchical supervision, and detailed rules and reg-
ulations”. Consistent with this line of thinking is the branding of the people that populate
the organisation (to borrow a term from the organism metaphor) as “human resources”.
This is an apt expression for looking at people as functional units, not as persons.

It is important to be aware of the difference between a bureaucracy as a metaphorical
machine and an IT system as a real machine. A bureaucracy uses a form of specialised
natural language with differs from common language but which is still a social sign

28 C. Suurmond

system interpreted by humans. An IT system, however, is an implementation of a formal
sign system, is driven by logical rules and is not capable of interpretation. That is why
a computer could be described as the ideal-typical bureaucrat, not susceptible to human
“weaknesses” such as having an own mind.

4.3 Organisms

Arie de Geus, building on the organism metaphor in his book “The Living Company”,
identified four factors common in long-lived companies: (1) sensitivity to their envi-
ronment, (2) coherence with a strong sense of identity, (3) ability to build constructive
relationships with other entities, within and outside itself, and (4) ability to govern its
own growth and evolution effectively [19]. The organism metaphor presents an organi-
sation as a coherent whole, interacting with its environment, and continuously adapting
and evolving for the sake of the continuity of the organism. The metaphor suggests that
organisations, like organisms, strive as individuals for continuity, mature in time, and
adapt to circumstances. The entomologist Wheeler described in 1911 an organism as
“neither a thing nor a concept, but a continual flux of process, and hence forever chang-
ing and never complete” [20]. More than the view of an organism as, for example, “an
organized body, consisting of mutually connected and dependent parts constituted to
share a common life” (OED) [21], Wheeler’s definition emphasises the dynamic aspects
of an organism: always processing, and always changing, and De Geus’s analysis of the
living company fits Wheeler’s definition well.

The same Wheeler provided another biological concept, possibly suitable for
metaphorical use. In studying insect societies he designated the individual ant-colony
as superorganism because (1) it behaves as a unit; (2) it shows some idiosyncrasies in
behaviour; (3) it undergoes a cycle of growth and reproduction that is clearly adap-
tive; and (4) it is differentiated into queens and workers [22]. It is certainly alluring to
investigate the superorganism concept as metaphor for an organisation, because of the
characteristics mentioned above, and also because of the essential difference between
the unitary control system of the organism (some form of a central nervous system) and
the individual control systems of the organisms that together constitute the superorgan-
ism. As biological concept it can account for individual agency, a phenomenon that is
discussed as a shortcoming of the organism metaphor [23]. However, for this paper I
want to limit myself to just this observation and not delve deeper into this idea.

4.4 Efficient and Final Causation

Peirce has written: “The signification of the phrase “final cause” must be determined by
its use in the statement of Aristotle that all causation divides into two grand branches,
the efficient, or forceful; and the ideal, or final [...] Final causation does not determine in
what particular way it is to be brought about, but only that the result shall have a certain
general character. Efficient causation, on the other hand, is a compulsion determined by
the particular condition of things, and is a compulsion acting to make that situation begin
to change in a perfectly determinate way; and what the general character of the result
may be in no way concerns the efficient causation” [5]. The efficient/causal causation
was mentioned earlier in this paper when discussing interpreting signs as opposed to

Disruption and Images of Organisation 29

merely reacting to signs, here the two kinds of causation return for our understanding of
a fundamental distinction between machines and organisms.

The “behaviour” of a machine is determined by nothing but the laws of physics, its
movements are only driven by efficient causation. Its future state is determined by its
construction and its history, not by some awareness of that future state. The “behaviour”
of alogical machine (the computer) is similarly determined by efficient causation. Given
its structure of logical rules (program), its initial state (data), and some triggering event
the logical transformations on the data are fully determined by the laws of logic (the
fact that mechanical and logical machines are designed and deployed for realising future
states is discussed in the next subsection). Note: the observation that humans, including
software engineers, are not always fully able to understand and explain the way the
computer system “behaves” does not alter the fact that computers just follow logical
rules.

All living organisms exhibit a combination of homeostasis (dynamically keeping
a stable state in a variable environment) and development from an initial state to a
mature state. Higher organisms also display intentional behaviour that guides its actions
towards a desired future state. The phenomenon that the development and behaviour of
an organism is explained by some future state is the final causation described above by
Peirce: the organism strives to bring about (causes) the future state, along a not fully
determinate way. Of course organisms are not completely free to choose and realise
future states. As material beings they are subject to the laws of physics and chemistry;
social organisms inhabiting their social world are also subject to the constraints of rules
and habits formed in the history of the individual interacting with its social environment.

Organisms, driven by final causation (their desires, intentions, plans), use instru-
ments. Humans use their practical and theoretical knowledge of efficient causation to
construct physical and logical machines as instruments for the realisation of their goals.
A machine in operation is driven by efficient causation, the process of design and use of
a machine is driven by final causation. The final state of design is represented in abstract
models, the final state of construction is represented by the building plan.

The term enterprise engineering borrows from the machine metaphor. Individual
behaviour and individual choices are ignored and the organisation is considered as a
machine driven by efficient causation. The term suggests that the enterprise engineer
aspires to design the enterprise as an instantiation of the Weberian ideal-typical bureau-
cracy. It is intriguing to think about the question of the place of the “operator” of such
an organisation-as-machine: is the operator outside or inside? If outside, then he is not
part of the organisation. If inside, then the machine is self-steering and more like an
organism.

4.5 Efficient and Final Causation in the Application of Rules

When confronted with an irregular situation in a standardised routine process, one issue is
to determine what is going on (classification), another issue is how to proceed (action).
Sometimes classification and action are obvious. It gets disturbing when there is no
obvious proper way to proceed. Either it is not clear what is going on (and still less how
to proceed, think of the first stages of the COVID pandemic in early 2020), or the situation
is clear but applicable rules are either lacking or conflicting. This problem is extensively

30 C. Suurmond

discussed in law. In interpreting problematic cases in court, a judge has several methods at
his disposal (which are not mutually exclusive in their effects, but overlapping). Different
methods can result in different conclusions, giving preference either to the exact words
of written law (grammatical); to customary interpretation (historical); to consistency
across applications (systematic); or to the original aims the makers of the law had in
mind (teleological).

In business, as in law, matters must be decided by interpreting general rules in a con-
crete case (cf the earlier section about semiotics), choosing between the interpretation
methods mentioned above. Given the relational nature of business, the preference should
be for the systematic and teleologic methods of interpretation. Systematic, because the
business should be a reliable and predictable partner and behave consistently in its
interactions with customers, suppliers, employees, and other stakeholders. Teleologic,
because the business should act according to the spirit of its contracts and agreements,
respecting the agreed purposes of its commitments and promises. Traditionally, how-
ever, bureaucratic tendencies in larger organisations with its formalised language favour
verbal meaning and historical interpretation. The proliferation of IT systems with its for-
mal languages have the tendency to reinforce bureaucratic interpretation. The machine
metaphor, leaning towards verbal (mechanic) interpretation, can therefore be considered
as a risk for fulfilling business agreements under non-standard circumstances.

4.6 Cybernetics

Of course, machines (either mechanical or logical) are not just dumb mechanisms. Ben-
nett describes in his book “A history of control engineering” how centuries ago practical
engineers invented and improved feedback mechanisms, “often being far ahead of the
theoretical understanding of what they were trying to achieve” [24]. Feedback mecha-
nisms in the world of organisms and in the world of machines were studied simultane-
ously. The parallel between organisms and machines was recognised by Norbert Wiener
in his seminal work about cybernetics, where he wrote “We see that for an effective
action on the outer world, it is not only essential that we possess good effectors, but
that the performance of these effectors be properly monitored back to the central ner-
vous system, and that the readings of these monitors be properly combined with other
information coming in from the sense organs to produce a properly proportioned output
to the effectors. Something quite similar is the case in mechanical systems” [25]. Such
feedback mechanisms are instruments for controlling proper behaviour of the organism
and the movements of the machine. Sometimes the control is about homeostasis (keeping
the state in the organism or machine within bounds), sometimes it is about controlling
transitions from state to state.

Notwithstanding the significant parallelisms between feedback mechanisms in
organisms and in machines, some cybernetic mechanisms in higher organisms are fun-
damentally different from machines: (1) only higher organisms can consciously develop
(invent, experiment with) new reactions on perception and feedback, (2) only higher
organisms are able to formulate goals, and (3) only higher organisms can understand
and weigh goals depending on social circumstances. The cybernetic differences between
machine and organism are reflected in Stafford Beer’s Viable System Model, where Sys-
tems 1 and 2 are about the execution of processes, System 3 is about establishing rules,

Disruption and Images of Organisation 31

resources, rights and responsibilities, and Systems 4 and 5 are about monitoring the
environment and policy decisions [26, 27]. While Systems 1 and 2 could be formalised
and executed by machines, Systems 3, 4 and 5 are necessarily based on the flexibility
of human perception and interpretation, as well as human value judgements. The lower
systems might be mechanical, the higher systems must be social.

4.7 Machine Metaphor or Organism Metaphor?

It goes without saying that modern society with its modern organisations is based on
standardised processes, often high volume, and processing flexibility is ever increasing.
The machine metaphor is apt to guide our thinking about such processes. However such
machine-like processes are embedded in the organisation as a whole, supporting the
dynamic and evolving business relations of the organisation. For the latter the organism
metaphor is much more suitable. Like organisms, in case of unforeseen events organisa-
tions must be able to interpret and act in creative ways in order to continue and achieve
its goals. Machines are subservient to (super)organisms. In the next sections examples
of disturbance will be discussed first, and methods to prevent disruption next.

S Examples of Disturbing Events

5.1 Examples from Business Processes

I will start with a story about the capabilities of gulls. At the University of Bristol, a
research group in the field of Aerodynamics and Aeroelasticity was engaged with the
improvement of the flight capabilities of drones in cities. One of the challenging problems
was flying drones in fiercely turbulent air around high buildings. The researchers had
noted that gulls could move very smoothly there, and they wanted to learn from the
gulls. Hence, they invited the Dutch marine biologist Kees Camphuysen, a specialist on
gulls, in order to discuss this issue. Camphuysen writes about his visit to Bristol: “what
impressed the researchers most was the sensitivity of birds. In flight, all feathers appeared
to play a role, if it was not for floating on the air, then for steering, braking, or simply
sensing the differences in air pressure. Each feather turned out to be a sensor and the
information transmitted through the nerves could immediately be used to continuously
adjust the position of the tail and wings, as well as the position of the rest of the body, to
the varying airflow and the desired manoeuvre in the air”. He contrasts this fine-tuned
capability of birds (already existing some 120-130 million years ago) to the relative
clumsiness of the drones build by humans, at that time having some dozens of sensors
[28].

It is interesting to compare Camphuysen’s rendition of the sensoric-motoric capabil-
ities of gulls to an example of organised information channels in a company, as told to
me by the owner of a meat processing company. His company used to provide smaller
supermarket chains with pre-packaged meat. He owned about 20 delivery vans for dis-
tributing the products to the stores. The owner told me that he repeatedly had been
advised to outsource transport, because that would be much cheaper. However, he had
a clear motivation for having his own distribution: his drivers visited all his customers

32 C. Suurmond

multiple times each week, having a chat and a peek at the unloading and storing area
at each store, possibly noticing changes in the behaviour of the customer. This “sensing
system” provided him (as a hands-on owner) with hugely valuable information for doing
his business. Account managers would never be able to provide such information from
their conversations with customers in meeting rooms.

A second example of organising the “sensing system” in an organisation is also from
meat processing, this time from the production area for deboning the meat. The person
responsible for bringing the meat into the area was physically located at the weighing
scale at the entrance to the area, having a good view on the deboning lines in the area, on
the cold buffer area in his back, on the production lines beyond the buffer area, and on the
weighing scales registering their output. Together this created a good and highly capable
low-level “sensoric-motoric” coordination system on the work floor regulating the flows
of meat to and from the deboning area, monitoring both production pace and yield in real-
time and ‘real-place’. This man was also the key information channel between planner
and production, both for adjusting planning to actual production results, for assessing
possible planning changes, and for communicating planning changes to the work floor.
In later years, I could compare the operation of the deboning department of this plant
with deboning departments of other plants (some of them belonging to the same parent
company). I learned to appreciate the difference between various implementations of
exactly the same business processes. When people of different departments are operating
in isolation from each other and communicating only via formalised information in IT
systems (production orders, production records), monitoring and coordination is slower
and of lower quality than in companies where people in different departments interact
directly with each other. It is the capability to perceive, process and convey information
about irregularities that make the difference.

These two examples, one from the commercial environment and one from the pro-
duction environment, indicate the importance of using “thick descriptions” in business
modelling [29, 30]. Process schemata are lifeless, as are “thin” descriptions that repre-
sent processes by means of rigidly formalised and formatted schemata. The latter type
of process representations form a very convenient input for configuring IT systems, but
it is poor in providing context to the business processes. Thick process descriptions, by
contrast, are outcome oriented and provide context information about why the process
is what it is. Thin descriptions make clear how the process is structured, thick descrip-
tions are needed to understand why it is running the way it is. Thick descriptions can
also explain the difference between processes that are the result of their history (the
accumulation over a longer period of time of small adaptations, each being rational,
can sometimes result in suboptimal processes), the result of a specific configuration
of resources (availability of key employees with specific capabilities), or the result of
a deliberate design. Thick business models show place and function of human inter-
pretation, allow for purposeful (‘teleological’) interpretation in case of irregularity in
processes and are prerequisite for achieving stability of the processes under unforeseen
circumstances.

Disruption and Images of Organisation 33

5.2 Examples from IT Support

A good example of business continuity under disturbing circumstances was provided
by a middle manager in a plant where I was doing a project a few years ago. More
than 10 years earlier the centralised ERP system of the multinational parent company
broke down and was not available for more than a week. She noticed that very soon all
over Europe production facilities halted their operations as a consequence. Much to her
pride she recounted that “her” plant was able to keep running for the whole breakdown
period, reducing production loss to a minimum. They were able to do this because of
the combination of a heterogeneous IT landscape, with loose couplings between the
central system and process control, and knowledgeable and experienced shift leaders in
each production department. This allowed them to sustain production during the ERP
breakdown by focussing on long runs of a choice of fast-moving simple products.

A similar example of flexible IT support was the request by one of our customers for
a new shop floor IT system in a revitalised plant, to be realised within a few weeks. The
request was triggered by winning a tender for producing a rather large volume of products
for a major retailer. This very short implementation could be realised by focussing
on the really essential processes: firstly, the reliable registration of ordered, shipped
and invoiced product quantities (fulfilling the business agreement with the customer),
and secondly (and much less critical) the reliable registration of ordered, received and
invoiced incoming goods (checking the business agreements with the suppliers).

A contrasting example is something that happened as a consequence of the selling off
of a production plant by a multinational company. The plant produced branded products
for the parent company, in combination with products for third parties (the latter flow is
irrelevant for this example). Output of the production lines was shipped directly to the
warehouses of the parent company, the production plant was not allowed to keep stocks
of end products. The weekly production plan of the plant was initiated by a product
demand from the parent company. The plant would then produce the indicated demand,
with some variability (production is not an exact science). Part of the deal with the new
owner was that all information flows and material flows regarding the finished products
of the plant would remain unchanged. Of course, all necessary commercial contracts
about performance and finance were arranged, especially regarding the payment of
shipped delivered products. So far, so good. But during the transition period a very
tenacious problem emerged regarding administrative procedures and IT systems of the
parent company. Receipt of the finished product in their warehouses changed from
“internal transfer” from an internal supplier to “purchase” from an external supplier. A
hard condition for receiving goods from an external supplier in the ERP system was an
exact match in the ERP system between ordered quantity and received quantity. Without
such a match the delivery would be rejected. This condition clearly did not match the
business agreement, and could never be fulfilled in practice. Adapting this condition
in the ERP system was apparently a no-go, possibly because of the complexity of the
centralised IT system and the difficulty to assess the impact of such an adaptation to
other purchase processes in this large company. Much time over a long period was
spent looking for a solution, involving many people. One of the proposals was to have
the shipping department of the production plant enter a purchase order after loading a
truck, impossible to implement because of the 24/7 flow of goods. The IT system was

34 C. Suurmond

not capable of supporting such a perfectly normal business agreement and frustrated
business relations with a strategic supplier.

6 How to Prevent Disruption in Business Processes

6.1 Rosenhead’s Robustness Analysis and Its Application to Business Modelling
and Software Design

Jonathan Rosenhead has analysed planning as a form of decision making under uncer-
tainty, and his analysis could fruitfully be used for our subject. He contrasts classical
planning methodology with his so-called robustness methodology. In the classical app-
roach all steps and commitments from current state to future state (“target configuration’)
via intermediate states are defined in the planning stage, which is followed by the exe-
cution of the plans. Chances are that plans must be revised during execution due to
uncontrolled external circumstances and deviations in intermediate outcomes, leading
to unrest and extra costs. Rosenhead pleads for a robustness methodology, which “de-
clines to identify a future decision path or target. The only firm commitments called for
are those in the initial decision package — possible future commitments are of interest
principally for the range of capability to respond to unexpected developments in the
environment that they represent” [31]. This methodology is about step-by-step decision
making, working towards a not fully defined future situation. A primary criterion for
each step is how many “good” future states are made possible by the decision, and how
many “bad” future states are closed down. The more a decision opens up desirable (or
acceptable) future states, the more a decision closes down undesirable (or unacceptable)
future states, the more a decision is preferred. In other words, in an uncertain environ-
ment you are making piecemeal steps towards not fully specified goals, always checking
the environment and the actual situation, and always prepared to change the path towards
those goals according to the given situation.

Rosenhead’s approach could be viewed as simply a form of incremental planning in
the sense that one should not bite off more than one can chew. Although this view would
not be entirely wrong, for the purposes of this paper his argument could better be viewed
as the contraposition of the two different forms of causation. To repeat part of the earlier
citation of Peirce: “Final causation does not determine in what particular way it is to be
brought about, but only that the result shall have a certain general character. Efficient
causation, on the other hand, is a compulsion determined by the particular condition
of things [...] what the general character of the result may be in no way concerns
the efficient causation”. Rosenhead’s methodology is about final causation (focus on
outcome, flexible path), conventional planning about efficient causation (path is fixed,
outcome is at risk).

Reading Rosenhead’s analysis as a method to eliminate the disrupting character of
unforeseen events, his ideas can be used for thinking about disturbances in operational
processes and putting a check on their disruptive effects. His argument could be sum-
marised in three questions: (1) where do I want to go? (2) what is my current position? and
(3) which choices will bring me be nearer to a desired (or at least acceptable) position?
Translated into the world of operational business processes, his line of thinking is not
about process history (which led to your current position), but about process future (how

Disruption and Images of Organisation 35

to get to a desired position). When normal process flow is disrupted beyond immediate
repair, you need to look for available alternative processing routes.

One way of facilitating this kind of operational choice is by breaking up business
process flows in more or less autonomous processes (or process chains) with explicitly
specified entry and exit conditions. Please note that such conditions are not restricted
to informational issues, but about all sorts of material and immaterial conditions. For
example, suppose that an initial condition for a process is “clean material”. Any material
that is deemed to be clean (whatever the operational meaning of “clean” might be) can
be processed, any not-clean material must be cleaned first (pre-processed). In irregular
circumstances, the business can decide about alternative routes considering the extra
costs (money, time) of the required pre-processing.

This idea is not new, of course. Business has always operated this way, searching
for and finding alternatives when need arose. But the idea is a reversal of the modern
approach of highly integrated and tightly coupled process chains. It is a plea for loose
and clearly defined couplings between business processes. As a by-product, it enhances
the flexibility of the business to contract out (or in) part of its processes, for example
by hiring an external packager to relieve a temporary bottleneck on its own packaging
lines, or for packaging products for a special contract.

6.2 “Thick” Information Systems

Continuing along the line of thought in the subsection above and focusing on infor-
mational issues (emphatically no restriction to an IT perspective here), two very basic
questions could be asked as a starting point in process analysis. The first question is
about initial informational conditions: “which information is required by the process to
do a proper job”. The second question is about the exit condition: “which information
must be the result from the process, enabling possible downstream processes to do their
jobs properly”. Theoretically, an exhaustive analysis along such lines would render a
complete map of information links between processes. Any information that is used in a
process could be traced back to its originating process. Any information that is not used
in a downstream process is redundant and should be eliminated (the latter is an applica-
tion of a major principle of lean production). Practically, the questions help to discuss
business processes as understood by its practitioners themselves because it is about their
world and it does not exclude any form of information. As an example of the impartiality
of this approach to the kind of information, suppose a fork-lift truck driver must fetch
material from an internal warehouse required by a production line. As a generic process,
several pieces of information are required: what? — when? — where from? — where to?
— how many? In one company with a few experienced drivers and a manually fed pro-
duction line, such information is mostly available in the form of background knowledge
and mutual understanding. In another company, with temporary drivers and an automati-
cally fed production line, most of the information must be explicit and in understandable
language for the driver. In a third company the process is fully automated, the fork-lifts
are driverless automatic guided vehicles and all information must be coded in IT sys-
tems (and must probably be interfaced between heterogeneous IT systems, having their
own interpretation issues). The abstract process is clearly definable in a few variables

36 C. Suurmond

applicable independent the local circumstances; while real processes are highly variable
and require very different solutions for a supporting information system.

Analogous to the distinction in anthropology between “thick” and “thin” descriptions
as mentioned in the last paragraph of Sect. 5.2, we could differentiate between “thick”
and “thin” information systems. “Thin information systems” are restricted to IT systems
and their immediate functional relations with their environment (users, processes, I'T-
engineers). “Thick” information systems are about all information used and produced
by business processes, regardless their form.

6.3 Autonomy of Registration

The German 19" century historian Leopold von Ranke is famous for his statement
that history must show what actually happened (“wie es eigentlich gewesen ist””). The
same criterion should apply to the capturing of business data, which must show users
“what actually happened”, undistorted by ideas of what ought to have happened. An
implication is that information must not be restricted to predefined (foreseen) possible
events. Whatever happened, was evidently possible and should be appropriately recorded
(giving operational meaning to “appropriate” will be one of the challenges in system
development). Information should not be restricted to predefined formats.

Specifically, irregular circumstances that have disturbed business processes must not
prohibit proper registration of business data, just because the planning was not realised
or an order was modified by telephone. Or, the fact that my colleague has entered a
wrong item code at stock-in, should not prohibit me in entering the right item code at
stock out, even when this results in negative stock in the IT system. In designing an IT
system, the registration functions should be conceived first and independent of orders
and planning. In critical circumstances a business will find creative ways to continue
its operations. A relatively autonomous registration function in IT systems allows much
more support in such circumstances.

6.4 Business Modelling and Information System Design

Three principles for business modelling and information systems design were discussed
in this section: (1) the “possibility principle”: allow alternative routes in business pro-
cessing (manually pre-processing material and information when necessary); (2) the
“thick information principle”: design encompassing information systems where all rel-
evant information exchange in business processes is covered; and (3) the “autonomy
principle”: design registration functions for capturing “what really happened”, not as
feedback on “what should have happened”.

Business modelling in an existing organisation is both about modelling the “official”
process landscape as well as identifying and investigating existing “goat paths” in the
organisation. The latter often are important informal patterns of adjustment between
processes. The official process landscape runs the risk of being too abstract and will
sometimes be representing a “fair-weather” model how the organisation thinks it should
operate, the goat paths can reveal much about the real operation and makes a discussion
possible about strengths and risks of such informal patterns.

Disruption and Images of Organisation 37

Once I noticed production managers taking their morning coffee break at the plan-
ner’s office at the time the planner was about to finish his rescheduling of the afternoon
shift. When I asked about it they told me this was habitual. It provided an opportu-
nity for comparing views about the actual situation on the shop floor (late or ahead of
schedule, overshoots and undershoots of output, smooth flows or hiccups) and about the
intended changes. This face-to-face communication exemplifies informal mutual adjust-
ment, making quantities, sequences and times in the planning schedule meaningful. The
planned order “Produce 100 pieces X output 1600 kg input Y between 10am and 11am”
can mean that 1600 kg Y must be produced (100 pieces Y being the normative output),
or that 100 pieces X must be produced (1600 kg Y being the normative input), or produce
X out of Y until 11am sharp (expected 100 pieces X output, 1600 kg Y input).

Informal patterns in an organisation are an important element in the distinctive capa-
bilities as described by John Kay [11]. They constitute part of the “sensoric-motoric”
system of the organisation. Under normal operational circumstances this contributes to
the smooth operation of the organisation, detecting and solving the small irregularities
that are part and parcel of our real world. When bigger irregularities occur, potentially
resulting in a “violent dissolution of continuity” (i.e., disruption), this “sensoric-motoric”
system is called on to find solutions by creatively adapting and reconfiguring business
processes.

7 Conclusion

At the end I want to return once more to Short’s analysis of the concepts of efficient and
final causation in Peirce. Referring to Peirce, he writes: “in this passage, two sorts of
process are distinguished by their form, one involving variable steps with constant type
of result, the other, constant rule by which one step follows another but with variable
result” [7]. The latter process is mechanistic, driven by efficient causation. Under nor-
mal operational circumstances, having input and transformation under control in routine
processes, efficient causation will result in intended output. Obtaining intended output
in irregular circumstances must “[involve] variable steps with a constant type of result”.
Which steps are chosen will be guided by the idea of the “constant type of result”, hence
driven by final causation. This is essentially a semiotic process, interpreting the situation
while being aware of desired future states. This process might involve improvisation and
creativity, as noticed by Short: “One advantage Peirce’s conception has over Aristotle’s
is that the cooperation it assigns to chance and selection accounts for the emergence
of novel forms of order”. This last citation links very well with De Geus’s observation
that long-lived companies are “particularly tolerant of activities in the margin: outliers,
experiments and eccentricities within the boundaries of the cohesive firm, which kept
stretching their understanding of possibilities”. Improvisation and creativity is required
under disturbing conditions (the primary theme of this paper), but can also be induced
by new forms of business commitments (resulting from business strategy, from particu-
lar opportunities, or from ill-considered acceptance in a business contract of customer
specifications and conditions).

To repeat the first sentence of the abstract: The short answer to the question “what
is needed to make enterprises and software less vulnerable against disruptive events?”

38 C. Suurmond

is: eliminate the disruptive character of events. As argued in this paper, this should
entail both a “thick” approach to business processes, explaining the role of processes in
the fulfilment of business agreements, and a “thick” approach to information systems,
allowing the use of different kinds of information and information channels. Developing
an organisation like this will enhance both the “sensing” and the “motoric” capabilities of
the organisation (respectively scanning the environment for upcoming disturbances, and
executing business agreements under non-standard circumstances as well as executing
non-standard business agreements). Disturbing irregularities will then cause “solvable
disorder” in an organisation, instead of real disruption and breakdowns. Vulnerability
of organisations to disruption is diminished by enhancing its capabilities for processing
exceptional situations.

References

1. Musil, R.: Der Mann ohne Eigenschaften. Rowohlt, Hamburg (1981)

2. Yong, E.: When the next plague hits. In: Murphy, C. (ed.) The American Crisis. Simon and
Schuster, New York (2020)

3. Hopkin, P.: Fundamentals of Risk Management, S5th edn. Kogan Page, London (2018)

4. De Saussure, F.: Course in General Linguistics. McGraw-Hill, New York (1966)

5. Hartshorne, C., Weiss, P. (eds.): Collected Papers of Charles Sanders Peirce. Thoemmes Press,
Bristol (1998)

6. Heusden, B.P.: The Trias Semiotica (in press)

7. Short, T.L.: Peirce’s Theory of Signs. Cambridge University Press, Cambridge (2007)

8. Coase, R.: The nature of the firm. In: Williamson, O.E., Winter, S.G. (eds.) The Nature of the
Firm. Oxford University Press, Oxford (1993)

9. MacNeil, I.R.: The New Social Contract. Yale University Press, New Haven (1980)

10. MacNeil, I.R.: Reflections on relational contract theory after a neo-classical seminar. In:
Campbell, D., Collins, H., Wightman, J. (eds.) Implicit Dimensions of Contract. Hart
Publishing, Portland (2003)

11. Kay, J.: Foundations of Corporate Success. Oxford University Press, Oxford (1993)

12. Kay, J.: The Truth about Markets. Allen Lane, London (2003)

13. Stamper, R.: Information in Business and Administrative Systems. Wiley, New York (1973)

14. Jensen, K., Wirth, N.: Pascal User Manual and Report. Springer, New York (1985). https://
doi.org/10.1007/978-1-4684-0261-2

15. Habermas, J.: The Theory of Communicative Action, vol. 1. Polity Press, Cambridge (1986)

16. Habermas, J.: The Theory of Communicative Action, vol. 2. Polity Press, Cambridge (1987)

17. Goldkuhl, G., Lyytinen, K.: A language action view of information systems. In: Ginzberg, M.,
Ross, C.A. (eds.) Proceedings of the 3rd International Conference on Information Systems,
TIMS/SMIS/ACM, pp. 13-29 (1982)

18. Morgan, G.: Images of Organization, 2nd edn. Sage, Thousands Oaks (1997)

19. De Geus, A.: The Living Company. Nicholas Brealey Publishing, London (1997)

20. Wheeler, W.M.: The Ant-Colony as Organism. https://www.semanticscholar.org/paper/The-
ant%E2%80%90colony-as-an-organismWheeler/317td0b833e1ed391ed72bf170af25bfd75¢
d21le. Accessed 22 Nov 2020

21. OUP: The Oxford English Dictionary. Oxford University Press, Oxford (1989)

22. Wilson, E.O.: The Insect Societies. Harvard University Press, Cambridge (1971)

23. Kerr, R., Robinson, R.K., Elliott, C.: Developing metaphors in light of the visual and digital
turns in organizational studies. In: Ortenblad, A., Trehan, K., Putnam, L.L. (eds.) Exploring
Morgan’s Metaphors. Sage Publications, Thousand Oaks (2017)

https://doi.org/10.1007/978-1-4684-0261-2
https://www.semanticscholar.org/paper/The-ant%25E2%2580%2590colony-as-an-organismWheeler/317fd0b833e1ed391ed72bf170af25bfd75cd21e

24.
25.
26.
27.
28.
29.
30.

31.

Disruption and Images of Organisation 39

Bennett, S.: A History of Control Engineering. The Institution of Electrical Engineers, London
(1979)

Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine.
Wiley, New York (1948)

Beer, S.: Brain of the Firm, 2nd edn. Wiley, Chichester (1994)

Beer, S.: Diagnosing the System for Organisations. Wiley, Chichester (1985)

Camphuysen, K.: De Zilvermeeuw. Atlas, Amsterdam (2018)

Ryle, G.: Thinking and reflecting. In: Ryle, G.: Collected Essays 1929-1968. Routledge,
Abingdon (2009)

Geertz, C.: Thick description: toward an interpretative theory of culture. In: Geertz, G. (ed.)
The Interpretation of Cultures — Selected Essays. Basic Books, New York (1973)
Rosenhead, J.: Robustness analysis: keeping your options open. In: Rosenhead, J., Mingers,
J. (eds.) Rational Analysis for a Problematic World Revisited. Wiley, Chichester (2001)

)

Check for
updates

VR-UML: The Unified Modeling Language
in Virtual Reality — An Immersive Modeling
Experience

Roy Oberhauser™)

Department of Computer Science, Aalen University, Aalen, Germany
roy.oberhauser@hs-aalen.de

Abstract. Software models in the Unified Modeling Language (UML) can been
created or automatically reverse-engineered and used for quickly gaining structural
insights into larger, legacy, or unfamiliar software. But as the size, structural com-
plexity, and interdependencies between software components in larger systems
grows, two-dimensional viewing and modeling has limitations, and new ways of
visualizing larger models and numerous associated diagrams of different types are
needed to intuitively convey structural and relational insights. To investigate the
feasibility of using Virtual Reality (VR) to create an immersive UML-based soft-
ware modeling experience, this paper contributes a VR solution concept for visu-
alizing, navigating, modeling, and interacting with software models using UML
notation. An implementation shows its feasibility while an empirical evaluation
highlights its potential.

Keywords: Virtual Reality - Unified Modeling Language - Software modeling -
UML tools - Visualization

1 Introduction

Aristotle once stated “thought is impossible without an image,” and F. P. Brooks, Jr.
asserted that the invisibility of software remains an essential difficulty of software con-
struction - because the reality of software is not embedded in space [1]. Text-based
program comprehension remains the norm in our day, despite the obvious limitations
for this form of software comprehension, as evidenced in the low code review reading
rates of around 200 lines of code per hour [2].

In general, modeling provides an abstracted or simplified representation of a system
that can assist with understanding relationships between elements or concepts of interest.
Typically, views are used to address stakeholder concerns and portray relevant aspects of
amodel. For visualizing the structural design of a software system, UML [3] has provided
a unified and standard modeling notation. UML tools can support software developers
via visualization, diagramming, model-based code generation, reverse engineering (from
code to models), round-trip engineering, model transformation, and support for XML
Metadata Interchange (XMI) [4] for transferring models between tools.

© Springer Nature Switzerland AG 2021
B. Shishkov (Ed.): BMSD 2021, LNBIP 422, pp. 40-58, 2021.
https://doi.org/10.1007/978-3-030-79976-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79976-2_3&domain=pdf
http://orcid.org/0000-0002-7606-8226
https://doi.org/10.1007/978-3-030-79976-2_3

VR-UML: The Unified Modeling Language in Virtual Reality 41

Commonly available 2D modeling depictions in standard modeling tools have limi-
tations, and one can lose insight into the interrelationships across views, diagrams, and
relevant model elements as the size of the model and views grows. Evidence includes [5],
who concluded a network graph in VR was three times as good as a 2D diagram. For 3D
UML, X3D-UML [6] determined a clear and measurable benefit in 3D UML software
visualization, while a 3D UML tool case study [7] showed that a 3D perspective was
intuitive and improved model comprehension. A VisAr3D experimental study with 18
participants [8] showed positive evidence for 3D for UML model understanding when
many elements were present (and the third dimension’s contribution), while showing
that precision, efficacy, and time were not negatively affected.

VR could potentially assist with visualizing large and complex software models and
their interrelationships simultaneously while also providing an immersive experience in
the software models. VR is defined as a “real or simulated environment in which the
perceiver experiences telepresence” [9], a mediated visual environment which is created
and then experienced. VR has made inroads in various domains and become readily
accessible as hardware prices have dropped and capabilities improved, increasing the
accessibility and ubiquity of VR-based model visualization. VR-based visualization of
software models for insights could rejuvenate the interest with software models in gen-
eral and UML modeling in particular. In their study with 99 participants, [10] showed
that VR resulted in better overall learning performance and higher engagement than
textbook or video modes. A new approach via software model immersion could help
rejuvenate the software modeling area and help transition from source-code only com-
prehension to more integrative use of visual models where it makes sense. VR offers a
unique advantage in the unconstrained 3D space for visualizing, conveying, navigating,
and analyzing complex and heterogeneous models simultaneously. As software models
grow in complexity, an immersive environment could provide an additional visualization
capability to comprehend the “big picture” for structurally and hierarchically complex
and interconnected software diagrams, while providing an immersive experience for the
UML models in a 3D space viewable from different perspectives. The sensory immer-
sion of VR can support task focus during model comprehension while limiting the visual
distractions that typical 2D display surroundings incur.

In prior work, [11] demonstrated the use of various metaphors for a VR immersion
in software structures without the use of UML. VR-BPMN [12] described our solution
concept for visualizing Business Process Model and Notation (BPMN) [13] models in
VR. Next, VR-EA [14] presented a VR solution concept for visualizing, navigating,
annotating, and interacting with ArchiMate [15] Enterprise Architecture (EA) models,
while also describing our generalized VR modeling framework (VR-MF). Subsequently,
VR-EAT [16] integrated EA tool visualizations into VR, in particular dynamically gen-
erated diagrams from the EA tool Atlas and its meta-model [17]. VR permits the extent
of large models to be depicted and navigated visually, while overall interrelationships
within and between heterogeneous elements, models, and diagrams can be indicated
and considered. This paper extends our prior contributions with our solution concept
VR-UML, which provides a way to visually depict and immersively navigate, model,
and interact with UML-based software models in VR, enhancing these diagrams with

42 R. Oberhauser

3D depth, color, and inter-diagram element followers, while supporting heterogenous
hypermodels in VR.

The remainder of this paper is structured as follows: Sect. 2 discusses related work.
Section 3 presents our solution concept VR-UML. Section 4 then provides details on
our prototype implementation that demonstrates its feasibility. In Sect. 5 VR-UML is
empirically evaluated, and a conclusion follows in Sect. 6.

2 Related Work

Work on combining VR and UML includes Ozkaya & Erata [18], who propose their
intent for a research framework of a conceptual modeling tool, Virtual Reality Unified
Modeling Language (VRUML), but no VR realization details could be found. That VR
features are not yet commonplace in UML tools is evidenced by Ozkaya [19], who sys-
tematically analyzed 58 different UML modeling tools without any mention of VR, and
Ozkaya & Erata [20] who surveyed 109 practitioners to determine their UML prefer-
ences without any mention of VR. Related 3D (non-VR) UML visualization includes
the aforementioned X3D-UML [6], VisAr3D [8], and the case study by Krolovitsch &
Nilsson [7].

As to VR-based non-UML software model visualization, besides our own aforemen-
tioned prior software modeling in VR [11, 12, 14, 16], various metaphors in VR have
been attempted. Schreiber & Misiak [21] and Nafeie & Schreiber [22] use an island
metaphor in VR to represent components, packages, classes, and dependencies. Vin-
cur et al. [23] applies a city metaphor to software analysis. Schreiber & Briiggemann
[24] use a modular electrical component system metaphor in VR to visualize software
components.

Regarding hypermodeling work, besides our own prior work, the survey by Bork
etal. [25] comprehensively analyzed eleven visual modeling languages, including UML,
ArchiMate, and BPMN, revealing heterogeneity in the specified modeling language
concepts and techniques employed for concept specification. They found a lack of a
common visual metamodel across various visual modeling languages, incompleteness,
and thus difficulties in providing an overarching metamodel that could be used to simplify
the specification and interrelations between various model types.

In contrast, the VR-UML solution concept realizes a VR-centric visualization of and
immersive experience in UML models, providing automatic layout of views as stacked
3D hyperplanes, visualizing the reality of inter-view relations and recurrence of elements,
and enabling interactive modeling in VR. Its support for hypermodeling, e.g., such that
UML, ArchiMate, BPMN, and EA tool (Atlas) models can be visualized simultaneously
in the same virtual space supports deeper cross-model analysis across various diagram
types and stakeholder concerns. This capability may grow in importance with increasing
digitalization as (automatically extracted) UML-based software models become more
relevant to the business and EA and text-based code analysis (by non-developers) is no
longer efficient or viable.

VR-UML: The Unified Modeling Language in Virtual Reality 43

3 Solution Concept

With the upcoming challenges that increasing digitalization and IT infrastructure will
bring to enterprise architecture, rather than viewing models in isolation and in separate
tools, we envision the future of (software) modeling as integrative and holistic, utilizing
and accessing various available models concomitantly. VR provides a unique medium
of unlimited space and an immersive environment to support this modeling vision. Thus,
the foundation for our VR-UML solution (shown in blue in Fig. 1) is our generalized
VR Modeling Framework (VR-MF) [14]. It provides a VR-based domain-independent
hypermodeling framework supporting multiple heterogeneous models while addressing
three primary aspects of modeling in VR: visualization, navigation, interaction, and data
retrieval. Relationships between elements can be shown in 3D space, and related elements
can be grouped in 3D layers or views as appropriate. The capability to simultaneously
visualize multiple heterogenous models in VR is a key principle of our solution concept
as realized via VR-MF. As depicted in Fig. 1, prior work based on VR-MF addressed
enterprise architecture (EA) modeling with Archimate in VR called VR-EA [14], busi-
ness process modeling in VR called VR-BPMN [12], and integrated EA tool data and
visualizations demonstrated with VR-EAT [16] using the EA tool Atlas. ArchiMate
models use a graphical notation consisting of a collection of concepts (approximately
50) to portray a wide scope of EA elements and relationships. On the other hand, BPMN
models focus on business processes and consist of Business Process Diagrams (BPDs)
composed of graphical elements consisting of flow objects, connecting objects, swim
lanes, and artifacts. To meet commercial EA needs, Atlas, as a representative EA tool,
provides access to diverse EA-related data in a coherent repository and meta-model and
is not restricted to certain standards or notations. Thus, while UML is focused on model-
ing software structural aspects, ArchiMate, BPMN, and other EA models and views can
convey other non-software aspects that may also be of importance to various stakehold-
ers depending on their context and concern, especially as software becomes an integral
part of the overall digital organizations and their processes. Thus, our hypermodeling
principle as detailed in our prior work plays a fundamental role towards supporting
heterogenous VR model visualization with regard to our VR-UML solution concept.

'y N
VR-MF (Dpata Retrieval”Visualization [Navigation [Interaction]

\7/:801," |8 (VR-BPMN VR-EA VR-EAT
Enterprise]

Models & Views

[ATLAS Blueprints]
- J

Fig. 1. Solution concept showing our new VR-UML solution concept within our VR-MF
modeling framework, with VR-EAT, VR-EA, and VR-BPMN support.

BPMN Archimate

44 R. Oberhauser

Visualization. UML models use a graphical notation consisting of a collection of con-
cepts to portray a wide scope of software elements and relationships. The diagram
types can be categorized as structural diagrams (Class, Component, Composite structure,
Deployment, Object, Package, and Profile) and behavioral diagrams (Activity, Commu-
nication, Interaction overview, Sequence, State, Timing, and Use case). These diagrams
can participate in views used to convey information addressing concerns of specific stake-
holders. While many visual options and metaphors can be considered for VR, diverging
too far from the 2D diagrams and UML notations familiar to UML tool users would
reduce diagram comprehension. Yet placing 2D UML images like flat screens in front
of users would provide little added value in the 3D VR space. For visualizing and differ-
entiating diagrams, planes are used to take advantage of the 3D space, with each plane
representing a diagram. Stacked hyperplanes support viewing multiple diagrams at once,
while allowing the user to quickly see an overview of how many diagrams of what type
are available. Furthermore, stacked hyperplanes allow us to utilize the concept of a com-
mon transparent or invisible backplane to indicate common elements across diagrams
via multi-colored inter-diagram followers. Stacked diagrams are a scalable approach for
larger projects (compared to side-by-side) since the distance to the VR camera is shorter,
and multiple stacks can be used to group diagrams or delineate heterogeneous models.
Diagrams are of interest can be viewed side-by-side by moving them from the stack
via an affordance on a diagram corner we call anchor spheres, which can also hide or
collapse diagrams to reduce visual clutter.

To distinguish UML elements types, generic (customizable) UML icons are placed
on upper right and lower left of the top of the element. Rather than graphically modeling
each element type separately, this enables us to quickly support many different element
types using a common shallow box approach.

Due to the current lack of a common metamodel and/or inter-model specification
language that can be used when visualizing heterogenous models (cf. [25] in Sect. 2),
we resort to a pragmatic approach of providing a basic inter-model annotation capability
in VR.

Navigation. The immersion afforded by VR requires addressing how to intuitively
navigate the space while reducing the likelihood of potential VR sickness symptoms.
Two navigation modes are included in the solution concept: the default uses gliding
controls, enabling users to fly through the VR space and get an overview of the entire
model from any angle they wish. Alternatively, teleporting permits a user to select a
destination and be instantly placed there (i.e., by instantly moving the camera to that
position); this can be disconcerting but may reduce the likelihood of VR sickness that
can occur when moving through a virtual space for those prone to it.

Interaction. VR interaction with VR elements has not yet become standardized. In
our VR concept, user-element interaction is done primarily via the VR controllers and
a virtual tablet. The virtual tablet provides detailed element information with CRUD
(Create, Retrieve, Update, Delete) capabilities specific to each element as well as a virtual
keyboard for text entry via laser pointer key selection. The aforementioned corner anchor
sphere affordance supports moving/hiding/displaying diagrams. Inter-diagram element
followers can be displayed, hidden, or selected (emphasized).

VR-UML: The Unified Modeling Language in Virtual Reality 45

4 Realization

The VR-UML implementation architecture for our prototype is shown in Fig. 2. Due to
its multi-platform support, direct VR integration, popularity, and cost, the Unity game
engine 2020.2.0b4 is used with the SteamVR plugin v2.6.0b4. As shown, Unity uses
various assets such as Models, Scenes, and Scripts, which in turn access external model
files via our plugin adapter interface that parses and converts various model file formats
(e.g., UML, BPMN, ArchiMate) to our internal generic object representation.

Assets (" Model Files
Models Scripts UML
Materials A Archimate
Scenes BPMN \ BPMN)
Prefabs Egg{ﬂ:ﬁ [VR-EAT Subsystem)
SteamVR Model | [Atlas Models | |

Fig. 2. VR-UML implementation architecture.

For text readability, an aspect that is irrelevant for 2D but which VR needs to consider
is that the viewing angle from the user to the element (camera angle) can be dynamic
based on the VR camera position in space (which is what is actually moved to “navigate”),
thus the recognition and readability of elements must be considered from various angles.
Thus, in VR-UML the diagrams and any elements they contain are raised slightly for a
3D effect and these visible side edges utilized for text placement to permit the text to
be read from all sides in addition to the top. To support element delineation in space,
rather than using clear elements with border outlines - as is typically done in 2D UML
representations, in VR-UML a texture/color/material is used on all sides of an element
to give it substance. However, in 3D space if the elements are opaque, then another
element or relation could become hidden (and the user unaware of this), so a certain
degree of transparency for diagram planes and for certain elements is used to ensure that
relations and elements do not completely “disappear” within or behind other elements.
Furthermore, a customizable color scheme, e.g., Coad et al. [26] or the colored layers
used in the ArchiMate specification can be used to help distinguish UML diagrams
and elements as models grow, since, in contrast to 2D, many elements can be depicted
visually in VR.

One unexpected challenge in the UML visualization area is support for a common
UML diagram interchange format between UML tools that contains positioning and
layout data. While a mechanism for UML model exchange had been specified for UML
1.x using XMI, it only provides information on the model elements while lacking support
for exchanging diagram and element positioning and layout information. This limitation
is due to the UML metamodel lacking a standard way of representing diagram definitions.
While UML Diagram Interchange (UMLDI) [27] was published in 2006, few UML tool

46 R. Oberhauser

vendors appear to implement and support it. At the time UML 2.0 was published in
2005, UMLDI was unavailable for another year, so vendors may have ignored it and
continued with their own proprietary format for maintaining diagram layout information.
Most web-based UML tools and various desktop tools we tried support exporting only
common image file formats, while some support exporting the model in XMI but lack any
positional information. As XML can readily be converted into a JSON format, rather than
relying on the older common XML format in UML, we wanted to investigate utilizing
the newer and more efficient JSON format for UML model files. Various popular UML
tools were analyzed to determine if they already used or supported a JSON format for
UML. As StarUML uses JSON in their MDJ model files, VR-UML uses its UML JSON
file format. In Unity, the JsonDotNet package was used in combination with quicktype
to parse the JSON model file.

As shown in Fig. 3, at the highest level, an MDJ model file contains a single object
of the type Project that includes the project name and ID as well as an array of the
next level of objects. This array contains all saved Model Objects inside the project.
These Model Objects contain another array of objects of different types, of which we
focus on three: Diagram Objects (objects in a diagram and their positional data), Model
Data Objects (objects and their model data including relations and Child Objects), and
Collaboration Objects (all diagram data for sequence diagrams). While further objects
for diagram types such as activity or flowchart would expand the types, they are similar
to the sequence diagram in another object tree branch.

Project Object ["| Diagram Object
L . Model Data Model Data
Model Object [Object ™ child Object

Collaboration
Object

Diagram Object
Interaction

Object

Model Data
Object

Model Data
Child Object

Fig. 3. Model file structure in JSON format.

VR-UML: The Unified Modeling Language in Virtual Reality 47

To evaluate the practicality of the VR-UML solution concept and implementation
prototype, a case study was used. Support is initially limited to the common UML
diagram types: use case, class, sequence, and deployment. The travel agency example
project provided by UML Designer [28] was used as a UML model basis and then
imported to StartUML in order to get an MDJ model in JSON format. The model provides
the basic UML diagram types known in the 4+1 view model [29]: a use case diagram
depicting requirements in the scenario view (Fig. 4 left), a sequence diagram (Fig. 4
right) depicting runtime behavior in the dynamic or process view, a class diagram for
depicting the internal structure in the logical view (Fig. 5), and a deployment diagram
(Fig. 6) for depicting the physical view.

interaction Seq

Customer Agency Reservation

Fig. 4. Travel agency use case (left) and sequence (right) diagrams in StarUML.

The VR_UML visualization of the travel agency model is shown in Fig. 7, depicting
stacked hyperplanes for this model. Colors help differentiate diagram types. Here the
top grey plane shows a sequence diagram, the second purple plan the use case diagram,
the third plane the deployment diagram in green, and the bottom a class diagram in
red. Random colored followers along the invisible backplane (currently closest to the
camera) are automatically generated between recurring elements across diagrams to
follow participating elements across views (e.g., Customer (purple), Reservation (aqua)
and Customer (light green), which recur in the class and sequence diagrams with details
shown later), and can be used to quickly recognize recurring elements in other diagrams.
Anchor spheres on the corner of each diagram act as affordances that supports expanding,
collapsing, and moving a diagram.

48 R. Oberhauser

Agency
+name: String[1]
+createReservation()
+confirmReservation() ToCust Cust
Catalog neysToCustomers . ustomer
+age! 1 9‘%&”“‘*’5 +name: String[1]

+adress: String[*] {unique}

+agenciestoReservations +contactAgency()

+catglogs 0.1

Hpscvalens +customer 1
+cataloggToTravels Travel . ‘
®! +name: String[1] Reservation +reservatipnsToCustomers
Hravels™ | ;gestination: String[0..1] +issuedOn: Date[0..1] -
+status[1] +reservations
+ravels *
+Travels +reseryation 1
| i +invoicesToRegervations
+availabilityRanges
e Ll
Partner Availability invoiges 0.1

+start: Date[1] Invoice
+end: Date[1]

+id: Integer[1]
+emission: Date[1]

O O «enumeration» «dataType»
Customers Reservations ReservationStatus Date
option
confirmed
O cancelled
past

Travels O

auth

ReservationSearch

Fig. 5. Travel agency class diagram in StarUML.

Red Hat Enterprise Linux Advanced Server 6.0

Authentification

ClAgencyOffers| i
J +manifest

Artifactl
ClBooking System|_ i - intemnal cauth
-] +manifest [

.--Attifact2

[Internal Authentification weceidole>TCRIP
= 0

Red Hat Enterprise Advanced Server 3.0

Tomecat 7

Catalina Servlet Container

Sun SPARC Server
Y —

+JDBC +customers.war|

agency.war customers.war

B Ul FantEs

Agency App [Customers App
(-

Fig. 6. Travel agency deployment diagram in StarUML.

VR-UML: The Unified Modeling Language in Virtual Reality 49

Fig. 7. VR-UML stacked hyperplane visualization of travel agency model.

A virtual tablet is provided in VR-UML to support interaction and modeling and to
provide detailed information about an element. We chose this method since tablet usage
is common and intuitive (less VR training needed), and other VR-based affordances are
not yet standardized for providing detailed context-specific information for an element.
Figure 8 shows the ability to add a new class to a diagram including a keyboard where
each key is picked via a virtual laser pointer. Figure 9 shows the interface for creating
a new relation and indicating the type of relation (e.g., association, aggregation, etc.)
and its multiplicity. Figure 10 shows the ability to edit class attributes, e.g., the type,
multiplicity, and visibility.

Fig. 8. VR-UML create class modeling support with virtual tablet and virtual keyboard.

50 R. Oberhauser

Fig. 10. VR-UML attribute modeling support via virtual tablet.

As exemplified in Fig. 11, visual clutter can be reduced via the anchor sphere
affordance to collapse (hide) a diagram (which then displays the hidden diagram type).
Figure 12 shows side-by-side and offset diagram placement via anchor spheres.

Figure 13 shows the VR-MF hypermodeling capability for heterogeneous models in
VR (e.g., here UML and ArchiMate); related elements can be annotated across models
to support analysis.

5 Evaluation

To assess VR-UML empirically, a convenience sample of seven computer science stu-
dents from sophomore through master students participated, despite the currently very
restrictive COVID-19 pandemic situation and university contact policies. While the
group is not large enough to be statistically significant, the results can provide insights
to inform and guide future research. The subjects used an HTC Vive room scale VR
set with a head-mounted display and two wireless handheld controllers tracked by two
base stations. Each subject worked individually with a supervisor who provided instruc-
tions and timed the tasks. A Likert five-point scale was used for range-based responses.
All had some familiarity with UML and had used Sparx Systems Enterprise Architect
before; only two had used StarUML, and all but one had used VR.

VR-UML: The Unified Modeling Language in Virtual Reality 51

Fig. 11. VR-UML stacked plane view with two hidden/collapsed diagrams.

Fig. 12. VR-UML side-by-side and offset diagram placement.

The hypotheses that guided our tasks and questions were: while VR-UML will likely
be less efficient than 2D modeling in general, (1) VR-UML is advantageous and efficient
for more complex and multi-diagram models; and (2) users will subjectively enjoy the
VR immersion experience in UML models more that the 2D models.

52 R. Oberhauser

e = |Car! =
N e g R

ol Vg

Fig. 13. Hypermodeling example showing a VR-UML and VR-EA ArchiMate model.

5.1 Quantitative Analysis

The subjects were timed for the following tasks in non-VR (using StarUML) and VR-
UML:

1. Multi-diagram elements: which elements with the same name recur in multiple
diagrams and how often?

2. Change the attribute “email” in the Customer class from public to private.

Change the relation multiplicity between Customer to Shopping Cart to 1-1.

4. Create the Model-View-Controller (MVC) pattern in the class diagram in non-VR
(see Fig. 14) and VR-UML (Fig. 15). In non-VR a paper copy was accessible as a

W

VR-UML: The Unified Modeling Language in Virtual Reality 53

reference, in VR they had to remember or verbally ask questions while wearing the
headset.

Controller
-model: Model
-view: View
1
1
1
View 1

-model: Model Model
+do() N -pointCount: int

+addPoint()

Fig. 14. MVC pattern task example in StarUML.

Fig. 15. MVC pattern task example in VR-UML.

Figure 16 shows the task duration results. On average, VR took 344% longer for Task
1, 141% longer for Task 2, and 43% longer for Task 4. For Task 3, when dealing with
multi-diagram elements, VR was 14% more efficient on average - because VR-UML’s
ability to visualize multiple diagrams and highlight inter-diagram elements. We see this
result as providing support for hypothesis (1). Note that for Task 2, 3, and 4, the ranges
show a large degree of overlap, which can be interpreted that VR can perform better
than non-VR to depending on the user’s UML and VR competency.

Three possible reasons for the longer VR results are: 1) the VR interface is more cum-
bersome to control for modeling vs. a 2D mouse-based interface with which the subjects
have been trained, 2) text entry via virtual laser pointer keypad selection (resembling one
finger typing using a laser pointer) instead of the non-VR physical keyboard (enabling
touch typing), and 3) time spent in VR navigating through 3D space to see or interact
with the object of interest (vs. in 2D moving the mouse on a screen). As VR keyboards
become commonplace, this could reduce this factor’s efficiency influence.

54 R. Oberhauser

1) Non-VR: Change attribute @
1) VR: Change attribute

2) Non-VR: Change relation r,;,
27

2) VR: Change relation

3) Non-VR: Multi-diagram elements i!

3) VR: Multi-diagram elements

4) Non-VR: Create MVC E

4) VR: Create MVC

36|
0 100 200 300 400 500 600 700

Task Duration Range and Average (dot) in seconds

Fig. 16. VR and Non-VR task duration range and average (blue dot) in seconds. (Color figure
online)

Table 1. UML familiarity (1 to 5, 5 = very familiar, 1 = unfamiliar) vs. error frequency.

UML Non-VR errors | VR errors | Total errors
familiarity

2 1 3 4

3 0 0 0

3 2 0 2

4 0 2 2

4 0 0 0

4 0 2 2

4 0 5 5

Table 1 shows the errors made. We note that in two cases no errors were made in either
mode, in one case fewer errors were made in VR, while in four cases errors increased in
VR. Since VR relied on subjects’ memory of the pattern and subjects could not compare
their model to a reference model on paper as they did in non-VR, we do not weight VR
errors strongly. Due to the relatively minor error rate differences, we interpret the results
to indicate that with additional training and familiarity with VR-UML, the error rate in
VR could be equivalent to that of 2D and that it is not inherently more error prone for
all cases and all subjects.

5.2 Qualitative Analysis

In the qualitative responses shown in Fig. 17, all agreed VR-UML to be intuitive and
43% more so than non-VR. 86% agreed that VR-UML provided a clear model structure.

VR-UML: The Unified Modeling Language in Virtual Reality 55

As to changing an element, 71% found them equivalent while 29% found non-VR easier.
For finding recurring elements across diagrams, 86% strongly agreed that it was easy in
VR-UML compared to 43% for non-VR. In general, VR did not fare worse than non-VR
on these qualitative aspects, and often even better.

B Strongly disagree Disagree O Neutral Agree EStrongly agree

VR: Intuitive?

Non-VR: Intuitive?
VR: Easy to change element?

Non-VR: Easy to change element?

VR: easy to find recurring elements?
Non-VR: easy to find recurring elements?

VR:structure clear?

Non-VR: structure clear?

|

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 17. Qualitative comparison of VR and Non-VR.

Additionally, 71% stated that they liked VR-UML better than non-VR. We interpret
this as support for hypothesis (2). VR-UML advantages explicitly mentioned included:
VR provided a better overview of diagrams and how they relate to each other, the layered
3D hyperplane stack makes comprehension of architecture easier, better visualization
in general - and specifically for relations, VR is more intuitive, the VR user interface
simpler than a menu system, and VR provides better focus due to immersion. Disadvan-
tages mentioned included: efficiency to perform tasks, text input takes much longer via
virtual keyboard with laser pointer, and the potential for VR sickness for sensitive users.
Suggested improvements included: voice input or other text input alternative for VR.

5.3 Discussion

While our small sample size is not statistically significant, we believe there is still suf-
ficient value from the results to infer trends and to inform future research. The study
showed evidence that VR can indeed support modeling for certain scenarios. We hypoth-
esized that VR would be advantageous relative to 2D for more complex structures or
inter-diagram scenarios which VR can better depict simultaneously due to its 3D nature.
As shown in Fig. 16, recurring elements across multiple diagrams were indeed found
more quickly (16% on average), due primarily to our VR-based support for visually
depicting these same elements, supporting hypothesis (1).

Factors that affected our study included: the COVID-19 policies to reduce interac-
tions and interaction time, such that no preparation, training, or warm-up was given (no
VR training nor VR-UML app training). In contrast, all participants had used 2D UML
tools beforehand. Furthermore, VR app interaction and controls are not yet standard-
ized and familiar, so subjects may not automatically know how to achieve some goal
in VR — compared with professional 2D tools where common expectations exists as to
where one will likely find menu items to achieve some task. Another aspect is cognitive
stimulus: VR visualization takes up much more visual processing that is still relatively
new and unfamiliar as yet to these subjects and can be disconcerting or initially affect
efficiency (i.e., a new world to explore effect).

56 R. Oberhauser

Threats to validity include: the small convenience sample size; the self-assessed UML
competency (vs. a UML competency test); lack of experienced software developer UML
competency or certification; VR tasks were performed directly rather than after a VR
warm-up phase; users lacked a MVC reference image in VR (non-VR had a paper copy),
thus subjects had to recall the MVC pattern from memory - which some may be better
at than others - or verbally ask questions; lack of prior training with the VR-UML app,
leading to inefficiencies and errors that may not actually depend on VR as a medium,
but are caused by unfamiliarity with such an app and its interface (due to COVID-19 the
evaluation time was minimized and training time cancelled).

As to counter-scenarios, VR-UML is likely not suitable or recommended for small
and simple UML models or single-diagram models from and efficiency or effectiveness
perspective. However, despite this, VR-UML could provide qualitative improvements
which could possibly create (or rejuvenate) excitement for UML modeling.

In summary, we see various positive indicators from this study that VR-UML can
show advantages where more complex and multi-diagram models are involved (and by
inference hypermodeling); that the immersive experience of UML models in VR adds
qualitative aspects that users prefer; and that any task inefficiencies in VR are probably
tolerable (as shown be the task duration range overlap). VR-UML efficiency could be
improved with explicit VR-UML training and text entry alternatives.

6 Conclusion

With our VR-UML contribution we have provided an immersive UML model experi-
ence for visually depicting and navigating UML diagrams of software models in VR.
The solution concept and guiding principles were described, and its feasibility demon-
strated with a VR prototype, with which we empirically evaluated our solution. Based
on our VR hyperplane principle, it enhances UML diagrams with 3D depth, color, and
automatically generated inter-diagram element followers based on our backplane con-
cept. Modeling and interaction are supported via a virtual tablet and virtual keyboard.
By leveraging the unlimited space in VR, the overall extent of multiple diagrams and
large models can be depicted and navigated visually, while overall interrelationships
within and between heterogeneous elements, diagrams, and models can be indicated
and analyzed. Furthermore, our VR modeling framework VR-MF contributes a gener-
alized hypermodeling approach for loading and visualizing different model types in VR
whereby UML and EA-related models such as ArchiMate, BPMN, and Atlas can be
visualized and analyzed simultaneously. The sensory immersion of VR can support task
focus during model comprehension and increase modeling enjoyment, while limiting the
visual distractions that typical 2D display surroundings incur. Most subjects preferred
VR-UML overall.

Various UML tools support reverse-engineering models directly from the code
(Ozkaya 2019). By leveraging today’s processors and cloud computing, they can rapidly
provide just-in-time reverse-engineered models to document and visually convey the
real software model based on the actual codebase both efficiently and without model-to-
code inconsistencies. In combination with VR-UML, visualization, analysis, and immer-
sion in software models could rejuvenate UML-based software modeling in the face of

VR-UML: The Unified Modeling Language in Virtual Reality 57

rapidly evolving codebases and in support of software maintenance of legacy systems.
Future work includes adding support for additional UML diagram and elements types,
enhancing the VR interface, adding additional inter-model annotation and informational
capabilities, optimizing the model storage format, and a comprehensive empirical study.

Acknowledgements. The authors would like to thank Marie Baehre and Stefan Wehrenberg for
their assistance with the implementation and evaluation.

References

10.

11.

12.

13.
14.

15.
16.

17.

. Brooks Jr., EP.: The Mythical Man-Month. Addison-Wesley Longman Publication Co., Inc.,

Boston (1995)

. Kemerer, C.F,, Paulk, M.C.: The impact of design and code reviews on software quality: an

empirical study based on PSP data. IEEE Trans. Softw Eng 35(4), 534-550 (2009). https://
doi.org/10.1109/TSE.2009.27

OMG: Unified modeling language version 2.5.1 (2019)

OMG: XML Metadata Interchange (XMI) Specification Version 2.5.1 (2015)

Ware, C., Franck, G.: Viewing a graph in a virtual reality display is three times as good as a
2D diagram. In: Proceedings of 1994 IEEE Symposium on Visual Languages, pp. 182-183.
IEEE (1994). https://doi.org/10.1109/VL.1994.363621

. Mclntosh, P.: X3D-UML.: user-centered design, implementation and evaluation of 3D UML

using X3D. Ph.D. dissertation, RMIT University (2009)

Krolovitsch, A., Nilsson, L.: 3D Visualization for Model Comprehension: A Case Study
Conducted at Ericsson AB. University of Gothenburg, Sweden (2009)

Rodrigues, C.S.C., Werner, C.M., Landau, L.: VisAr3D: an innovative 3D visualization of
UML models. In: 2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), pp. 451-460. IEEE (2016)

Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42(4),
73-93 (1992). https://doi.org/10.1111/j.1460-2466.1992.tb00812.x

Allcoat, D., von Miihlenen, A.: Learning in virtual reality: effects on performance, emotion
and engagement. Res Learn Technol 26 (2018). https://doi.org/10.25304/rlt.v26.2140
Oberhauser, R., Lecon, C.: Virtual reality flythrough of program code structures. In: Pro-
ceedings of the Virtual Reality International Conference-Laval Virtual 2017, pp. 1-4. ACM
(2017). https://doi.org/10.1145/3110292.3110303

Oberhauser, R., Pogolski, C., Matic, A.: VR-BPMN: visualizing BPMN models in virtual
reality. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 83-97. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94214-8_6

OMG: Business Process Model and Notation (BPMN) Version 2.0.2 (2014)

Oberhauser, R., Pogolski, C.: VR-EA: virtual reality visualization of enterprise architecture
models with ArchiMate and BPMN. In: Shishkov, B. (ed.) BMSD 2019. LNBIP, vol. 356,
pp- 170-187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24854-3_11

Open Group: ArchiMate 3.1 Specification. The Open Group (2019)

Oberhauser, R., Sousa, P., Michel, F.: VR-EAT: visualization of enterprise architecture tool
diagrams in virtual reality. In: Shishkov, B. (ed.) BMSD 2020. LNBIP, vol. 391, pp. 221-239.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52306-0_14

Sousa, P., Leal, R., Sampaio, A.: Atlas: the enterprise cartography tool. In: 18th Enterprise
Engineering Working Conference Forum, vol. 2229. CEUR-WS.org (2018)

https://doi.org/10.1109/TSE.2009.27
https://doi.org/10.1109/VL.1994.363621
https://doi.org/10.1111/j.1460-2466.1992.tb00812.x
https://doi.org/10.25304/rlt.v26.2140
https://doi.org/10.1145/3110292.3110303
https://doi.org/10.1007/978-3-319-94214-8_6
https://doi.org/10.1007/978-3-030-24854-3_11
https://doi.org/10.1007/978-3-030-52306-0_14

58

18.

19.

20.

21.

22.

23.

24.

25.
26.
217.

28.
29.

R. Oberhauser

Zhang, B., Chen, Y.S.: Enhancing UML conceptual modeling through the use of virtual reality.
In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences,
p. 11b. IEEE (2005). https://doi.org/10.1109/HICSS.2005.239

Ozkaya, M.: Are the UML modelling tools powerful enough for practitioners? A literature
review. IET Softw. 13, 338-354 (2019). https://doi.org/10.1049/iet-sen.2018.5409

Ozkaya, M., Erata, F.: A survey on the practical use of UML for different software architecture
viewpoints. Inf. Softw. Technol. 121, 106275 (2020). https://doi.org/10.1016/j.infsof.2020.
106275. ISSN 0950-5849

Schreiber, A., Misiak, M.: Visualizing software architectures in virtual reality with an island
metaphor. In: Chen, J.Y.C., Fragomeni, G. (eds.) VAMR 2018. LNCS, vol. 10909, pp. 168—
182. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91581-4_13

Nafeie, L., Schreiber, A.: Visualization of software components and dependency graphs in
virtual reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and
Technology, pp. 1-2. ACM (2018). https://doi.org/10.1145/3281505.3281602

Vincur, J., Navrat, P., Polasek, I.: VR city: software analysis in virtual reality environment. In:
2017 IEEE International Conference on Software Quality, Reliability and Security Companion
(QRS-C), pp. 509-516. IEEE (2017). https://doi.org/10.1109/QRS-C.2017.88

Schreiber, A., Briiggemann, M.: Interactive visualization of software components with virtual
reality headsets. In: 2017 IEEE Working Conference on Software Visualization (VISSOFT),
pp. 119-123. IEEE (2017). https://doi.org/10.1109/VISSOFT.2017.20

Bork, D., Karagiannis, D., Pittl, B.: A survey of modeling language specification techniques.
Inf. Syst. 87, 101425 (2020). https://doi.org/10.1016/j.is.2019.101425

Coad, P., Lefebvre, E., De Luca, J.: Java Modeling in Color with UML: Enterprise Components
and Process. Prentice Hall (1999) ISBN 0-13-011510-X

OMG: UML Diagram Interchange (UMLDI) 1.0 (2006)

UML Designer (2021). http://www.umldesigner.org

Kruchten, P.: Architectural blueprints - the “4+1” view model of software architecture. IEEE
Softw. 12(6), 42-50 (1995). https://doi.ieeecomputersociety.org/10.1109/52.469759

https://doi.org/10.1109/HICSS.2005.239
https://doi.org/10.1049/iet-sen.2018.5409
https://doi.org/10.1016/j.infsof.2020.106275
https://doi.org/10.1007/978-3-319-91581-4_13
https://doi.org/10.1145/3281505.3281602
https://doi.org/10.1109/QRS-C.2017.88
https://doi.org/10.1109/VISSOFT.2017.20
https://doi.org/10.1016/j.is.2019.101425
http://www.umldesigner.org
https://doi.ieeecomputersociety.org/10.1109/52.469759

®

Check for
updates

A Reference Architecture for Enhanced
Design of Software Ecosystems

Sanket Kumar Gupta, Bahar Schwichtenberg®™), and Gregor Engels

Paderborn University, Paderborn, Germany
{bahar.schwichtenberg,gregor.engels}Qupb.de,
skgupta@mail.uni-paderborn.de

Abstract. Software ecosystems have become a novel architectural app-
roach to extend software development to the outside of companies, where
third-party providers develop applications on top of a common platform.
While designing software ecosystems, platform providers face an over-
whelming design space of business and technical architectural decisions.
Usually, enterprise architecture modeling languages such as ArchiMate
are used to design the ecosystem around the platforms. Despite a body of
work studying architecture of software ecosystems, there is still a lack of a
reference architecture that captures both business and technical aspects,
which can be followed by platform providers to design these systems.

In this paper, we develop a reference architecture by using different
sources of information such as existing ecosystems and the literature.
After identifying the shortcomings of the ArchiMate language to design
software ecosystems, we extend the language using the reference archi-
tecture to enable direct and enhanced modeling of ecosystem-specific
concepts. The extended ArchiMate has been implemented in a tool that
we use to design a real-world ecosystem called F-Droid. Our results show
the reference architecture captures the F-Droid ecosystem architecture.
Bad architectural smells are detected, and improvement suggestions are
made. Our work will assist platform providers to improve architectural
decision-making by making informed design decisions.

Keywords: Software ecosystems * Reference architecture - Business
modeling - ArchiMate - F-Droid

1 Introduction

Today, leading software companies open up their software development processes
to the third-party provider to adapt to the continuously increasing demand for
innovative and changing software solutions and, at the same time, to address
business needs [1]. This novel approach is termed as software ecosystem [2],
which is inspired by the idea of natural ecosystems, where organisms interact
with each other and live as a unit [3]. An example of software ecosystems is the
ecosystem around the Google Android platform', where the Google company is

! https://www.android.com, Last Access: 1 June 2021.

© Springer Nature Switzerland AG 2021
B. Shishkov (Ed.): BMSD 2021, LNBIP 422, pp. 59-77, 2021.
https://doi.org/10.1007/978-3-030-79976-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79976-2_4&domain=pdf
https://www.android.com
https://doi.org/10.1007/978-3-030-79976-2_4

60 S. K. Gupta et al.

the platform provider offering the platform and a repository of in-house and
third-party mobile applications called Play Store?.

Designing software ecosystems is a complex and challenging task. Firstly
because the platform providers have to face a broad and overwhelming range
of interrelated business and technical design decisions [4]. Opening a platform
requires exposing internal resources to the third-party providers, which has
critical security implications and business risks for the platform providers [5].
Although a body of work in literature has already studied architectural char-
acteristics of software ecosystems, there is still a lack of a reference architec-
ture that provides a unified picture of the business-related and technical archi-
tectural building blocks. In the absence of a reference architecture, platform
providers have to rely on arbitrary architectural decision-making. As a result,
the providers’ time and budget are invested in mistake-prone development pro-
cesses, which miss informed architectural decision-making. In this situation, the
resulting ecosystems can be too restrictive, making the ecosystems less attractive
for third-party providers or the ecosystems are overly exposed, which threatens
the platform providers’ intellectual property [6]. Another challenge related to the
development of software ecosystems is to use enterprise modeling languages like
ArchiMate® to design the ecosystem architecture. Such languages are too generic.
Thus, platform providers fail to capture some critical ecosystem-specific aspects
such as openness policies using these languages. To overcome these challenges,
systematic architectural support is needed that provides the required knowledge
to enhance architectural decision-making and a modeling language that enables
platform providers to apply that knowledge.

In this paper, we propose a reference architecture for software ecosystems by
using the knowledge that we extract from various sources such as the literature
and existing ecosystems, and based on our previous work [7]. The reference archi-
tecture span across organizational, business, and technical aspects. It provides
a template solution to address key quality attributes of software ecosystems.
Besides, we extend the ArchiMate language with the ecosystem-specific con-
cepts from the reference architecture. Our solution has been implemented in a
tool using which platform providers can automatically generate an initial archi-
tecture based on the reference architecture and further tailor the architecture
by using the extended ArchiMate. Furthermore, we model and analyze a real-
world ecosystem called F-Droid using our solution. F-Droid is a platform for
the development of open-source Android Apps. We detect architectural smells
and deficiencies in the F-Droid ecosystem and suggest design decisions to over-
come them. Our work helps establish a solid knowledge base. It assists platform
providers in informed architectural decision-making.

The remainder of the paper is structured as follows: Sect.2 elaborates the
research steps that we apply to develop the reference architecture. In Sect. 3 we
propose a reference architecture to facilitate the systematic designing of software

2 https://play.google.com/store, Last Access: 1 June 2021.
3 https://www.opengroup.org/ArchiMate-forum/ArchiMate-overview, Last Access: 1
June 2021.

https://play.google.com/store
https://www.opengroup.org/ArchiMate-forum/ArchiMate-overview

Design Options of Store-Oriented Software Ecosystems 61

ecosystems. Section 4 present our approach to extend the ArchiMate language for
ecosystem modeling that is followed by Sect. 5, where we describe our case study.
Section 6 discusses related work. Section7 concludes the paper and addresses
future research directions.

2 Design Steps

We design the reference architecture for software ecosystems by following the
approach of systematically creating an empirically-grounded reference architec-
ture proposed by Galster et al. [8]. The procedure for designing the reference
architecture comprises six steps. Following, we explain each of these steps con-
cerning the development of reference architecture for software ecosystems.

Step 1: Decision on Type of Reference Architecture. The first step of
designing a reference architecture is to select an appropriate type of reference
architecture that would clearly state its main objectives [8]. At first, we deter-
mine the type of reference architecture that we aim to create by using a clas-
sification framework presented by Angelov et al. [9]. As per this classification
framework, reference architecture can be classified into five types. As a result, we
conclude that the proposed reference architecture of software ecosystems whose
goal is to facilitate multiple organizations in systematic creation of ecosystem is
developed by a research center loosely falls under Type 3. The following steps
are aligned with the selected Type 3 reference architecture type.

Step 2: Selection of Design Strategy. There are two possible design strate-
gies associated with designing a reference architecture. First, it can be created
from scratch. Second, it can be designed based on existing research work and
architectures available in the problem domain [8]. We choose the second strategy
of using existing research work and literature available in the software ecosystem
domain. In the next step, we illustrate the literature and research papers used
to gather information to design the reference architecture.

Step 3: Empirical Acquisition of Data. The next step is to accumulate infor-
mation available in the target domain of the reference architecture. For this, we
refer to the set of descriptive and analytical requirements presented by Sadi et
al. [5], raised while designing software ecosystems. We used these requirements as
guiding principles to define software ecosystem ontology and identify the archi-
tectural building blocks of the designed reference architecture. These design prin-
ciples are comprehensively explained in Sect. 3. In addition, we refer to our pre-
vious work presented by Jazayeri et al. [7], where we identify three architectural
patterns for software ecosystems called resale software ecosystems, partner-based
software ecosystem, and 0SS-based ecosystem. We complement this knowledge
by identifying relevant sources of knowledge by investigating the developer and
technical forums of the existing ecosystems.

Step 4: Construction of Reference Architecture. As per the decided Type 3
category, we construct an informal basic design of the designed reference archi-
tecture expressing the business, organizational, and technological aspects of a

62 S. K. Gupta et al.

software ecosystem. The previously mentioned elements in Step 3 are arranged
in conceptually similar groups of architectural building blocks. These architec-
tural building blocks are the smallest composing element of the reference archi-
tecture and are based on the performance drivers as quality attributes described
by Mhamdia et al. [10] and Jazayeri et al. [11].

Step 5: Enabling Reference Architecture with Variability. Variability
refers to the possible range of concrete architectures based on the context which
can be designed using the reference architecture. One of the ways to enable
variability in a reference architecture is through annotation of the architectural
element. Annotation refers to attaching additional information about the vari-
ability [8]. In our case, we enable the proposed reference architecture with vari-
ability by attaching additional information using attributes to relevant elements.
We identified the elements which need to be annotated based on the design deci-
sions of three architectural design patterns developed by Jazayeri et al. [11]. The
annotated elements of the proposed reference architecture are: revenue genera-
tion system, third-party developer, context, openness and platform.

Step 6: Evaluation of Reference Architecture. Evaluation of the proposed
reference architecture is out of scope for the study of this paper. Although, we
have used an actual world case study of an existing software ecosystem named
F-droid to show how the proposed reference architecture can be used in the
systematic designing of a software ecosystem. Furthermore, as a result of the
instantiation, we pointed out the features missing from the F-Droid ecosystem.

3 A Reference Architecture for Software Ecosystems

In this section, we present a reference architecture for software ecosystems. The
reference architecture aims at capturing interdisciplinary design decisions of soft-
ware ecosystems to facilitate the systematic design of these systems. As men-
tioned in Sect.2, we designed the reference architecture based on the design
principles, which we also used to identify its architectural building blocks and
determine software ecosystem ontology.

Two primary elements of software ecosystems are a software platform on
top of which different stakeholders of an ecosystem interact to develop end-user
applications and a store where these applications are marketed. In the following,
we elaborate on architectural building blocks of the reference architecture.

Collaborators: As per the definition, the stakeholders of an ecosystem could
be classified into three types, i.e., Platform Providers, Third-party developers,
and, Users. Third-party developers can further be classified as Trusted Partners
and Independent Developers based on the contractual agreement between them
and the platform provider.

Interactions: Platform providers are responsible for establishing an interaction
between various stakeholders as a part of Orchestration [2]. At tactical and
operational level, connectedness between various stakeholders are established

Design Options of Store-Oriented Software Ecosystems 63

through Community Building, Knowledge Sharing, and Support & Services. A
platform provider can put constraints on the platform’s usage and extension
by defining a set of rules or guidelines, deciding on the degree of openness and
imposing entry barriers to make sure only the right third-party developers can
enter the ecosystem [12].

Incentives and Motivations of Collaborators: To encourage third-party
developers to participate and contribute to the platform, platform providers
can decide on an appropriate level of openness and entry barriers to ease the
process of application development. A good Marketing & Sales strategy helps
platform providers in improving the profit margin for third-party developers [12].
Other motivating factors include wvision through which platform providers can
clearly state the future state of their ecosystem, to help collaborators decide on
their participation [12]. Feedback loop facilitator helps collaborator in collecting
feedbacks from users to track their satisfaction and using Market Analytics,
which is another type of feedback technique, gives an insight into the market
growth, in turn, helping platform providers enhance their profit margin [7].

Trust and Reliability: Contract management which can be used to regulate
their contribution or decide the type of agreement with the collaborators and
their share of profit in the revenue generated [13]. Using License Management,
platform providers can control the redistribution of its software and regulate the
usage of its intellectual property to ensure the development activities are carried
out responsibly [3].

Risk, Vulnerability and Tolerance: Risk, vulnerability & tolerance in a soft-
ware ecosystem can be controlled by deciding the degree of openness of the soft-
ware platform and its entry barriers. A software platform too open and with
a relaxed entry barrier may result in loss of quality and an increase in uncon-
trolled growth of an ecosystem [12], thereby making it vulnerable to outside
attacks. Risk, vulnerability, and tolerance can also be managed by Security,
Openness, License Management, and Privacy. Costs and Benefits of opening
up a software platform for external development is managed through a Revenue
Generation System which includes Platform fee, Service fee, Entrance fee or
donation. Marketing & Sales is another way through which benefits of opening
up a software platform can be provided to the collaborators.

Distributing and Decentralizing Responsibilities and Resources: Plat-
form providers can provide common platform boundary resources such as Tech-
nical & Social boundary resources offering different technical development toolk-
its such as APIs and social resources such as documentation and guidelines to
facilitate development activities for collaborators [14].

Distributing Control, Authority, Decision Making, and Access: Plat-
form providers manage Orchestration which involves developing strategies, spec-
ifying entry barriers, setting quality standards, defining guidelines for develop-
ment activities, etc. [3,15].

64 S. K. Gupta et al.

Security and Privacy: Security and privacy concerns can be addressed through
Access & Identity Management which facilitates identity-based access to the
platform and its resources, and Security & Privacy policies which is are legal
documents to precisely define what is acceptable and what is not in the devel-
opment activities carried out by the external developers.

Health, Productivity, Robustness and Performance: Health of an ecosys-
tem is influenced by the Productivity, Robustness and Niche Creation of a soft-
ware ecosystem [12]. The quality attributes, i.e., productivity, sustainability,
robustness, interoperability, modifiability, stakeholder satisfaction, and creativ-
ity, are the performance drivers in an ecosystem [10].

Alignment and Conflict Resolution: Platform providers can resolve conflicts
among stakeholders and enhance sustainability by establishing a solid relation-
ship among third-party developers through improving connectedness.

Figure 1 illustrates the visual structure of the designed reference architecture
for software ecosystems. It consists of architectural building blocks grouped in
similar conceptual groups depicting the organizational, technological, and busi-
ness aspects of a software ecosystem. These conceptual groups are as follows.

Actors: Actors in software ecosystems can be broadly classified into three types.
Firstly, platform providers who represent a software vendor of a leading software
company, someone who is the provider of the ecosystem and is responsible for the
orchestration of the whole software ecosystem. Secondly, third-party developers
who are the external entities that extend the technological platform to provide
a wide variety of applications for the ecosystem users. Third-party developers
can be further classified into two types 1) Trusted Partners, which is a type of
extender with expertise in a particular domain. They collaborate with the plat-
form providers to develop domain-specific applications, which are later marketed
jointly. 2) Independent Developers who work independently in collaboration with
platform providers to provide various innovative solutions to the users.

Business Management: Business management groups together business activ-
ities and tasks, influencing the whole ecosystem and its performance. Some of
these business activities are revenue generation system, marketing & sales, com-
munity building, support & services, knowledge sharing, market analytics, and
contract management. The ecosystem provider performs these business activities
and tasks to ensure the resources are optimally used, and the ecosystem performs
well.

Organizational Management: Organizational management groups together
the cross-cutting organizational aspects of a software ecosystem. Platform
providers are primarily responsible for managing the ecosystem. Some of these
organizational management activities are taking care of the health, security
and communication & coordination of an ecosystem, deciding the context of
an ecosystem by planning ecosystem’s domain criticality, targeted market, and
commerciality and performing the operational activities such as orchestration,
policy & license management.

Design Options of Store-Oriented Software Ecosystems 65

Platform: The platform group represents the software-based platform and the
resources to support third-party development activities through its extension.
Platform providers are now providing resources, i.e., software tools and knowl-
edge base, to third-party developers to assist them in developing a wide variety
of innovative applications. These resources are referred to as platform bound-
ary resources. These resources can be further classified into technical bound-
ary resources and social boundary resources. Technical boundary resources are
the technical resources that help third-party developers extend the software-
based platforms and application development. Social boundary resources are the
resources that are used to transfer knowledge about the development process. It
is concerned with providing documentation on how to extend the platform using
the available resources [14].

Store: A store is an online repository of end-user applications where a user can
find paid or unpaid applications. It consists of search functionality, an application
catalog, a feedback loop facilitator, and a backup repository.

User Interface: The constituent architectural building blocks of the User Inter-
face group acts as one of the access points to the software ecosystem’s users.
Platform providers offer an online store of applications to their users. These
online stores are part of a user interface of the software platform, which can be a
web-based application or a stand-alone application, or an operating system [16].

Computing Hardware: This group includes the architectural building blocks
representing the deployment aspect of a software ecosystem. Fach architectural
building block in this group represents a computing unit on which the technolog-
ical platform is deployed. The software platform can be deployed on Portable
Devices, or it can be a web-based application or a stand-alone application.

Additionally, we enable the proposed reference architecture with variabil-
ity by attaching additional information using attributes to relevant elements.
We identified the elements which need to be annotated based on the design
decisions of three architectural design patterns, i.e., Resale Software Ecosystem,
partner-based Ecosystem and OSS-based Ecosystem developed in [7]. The anno-
tated elements of the proposed reference architecture are: revenue generation
system, third-party developer, context, openness and platform. These elements
are marked with a star for distinction in Fig. 1.

4 ArchiMate Extended with Ecosystem-Specific Concepts

To facilitate model-based designing of software ecosystems, we studied Archi-
Mate as a modeling language to design a comprehensive software ecosystem
model capturing its various aspects. ArchiMate is a meta-model-based graphical
modeling language that provides an extensive set of symbols to model different
aspects of an enterprise architecture [17]. However, it lacks the semantic strength
to model domain-specific concepts because of its high level of abstractness [18].

As a part of our acquisition of empirical data, while designing the reference
architecture, we first established the architectural building blocks of the designed

66 S. K. Gupta et al.

Actors + User Interface Organizational Management
‘ Desktop ‘ Mobile ‘ Web-based +
Business Management .
>
o
; \ + sl = =
Platform Marketing Revenue Generation Community ﬂ; S =
Provider & Sales System Building = = ©
Il sl 8| E
Support &| | Knowledge Market Contract _6 n S g
Services Sharing Analytics | [Management © + = °
o [} g) S
o £ 5 N s
2 2 g8 21 e
5 S| 3 Bl 5
User Platform + Store % % % P H g
sgllzs|| 52| 52]|S
g<||8||25]|5¢ s
Technical Boundary T3||é<||8eal|dS S -‘%
Resources Application Catalog 2 “E’ -% it B g
= 3||z€|| gz
£ gl g2 el E
Independent Feedback Loop 3 r§% I = 8
Developer Facilitator] B =
=k Social Boundary 0 2 2 5 8
Resources [< ® S
Backup Repository] ?, P
o 5 'g
2] =
%]
8 <l &
Trusted K <
P Computing ~
artner
Hardware
Portable Personal
Devices Cloud Computer

Fig. 1. Reference architecture for software ecosystems

reference architecture such as platform, store, platform provider, etc., as software
ecosystem ontology. A software ecosystem ontology consists of a minimum set
of domain-specific concepts to describe the software ecosystem domain. Model-
ing languages should provide these concepts specific to the software ecosystem
domain to describe a software ecosystem. However, there is a gap between the
graphical and analytical requirements of designing a software ecosystem and the
current model-based approaches [5]. Hence, to create a comprehensive software
ecosystem model, additional domain-specific concepts are needed. In the follow-
ing, we illustrate the ArchiMate modeling language’s extension with concepts
specific to the software ecosystem’s domain.

4.1 Mapping ArchiMate to Domain of Software Ecosystem

We integrate the software ecosystem ontology with the domain-independent
ontology of ArchiMate using model transformation technique, which includes
defining a mapping strategy [19,20]. This mapping strategy involves mapping
the concepts of software ecosystem ontology with the concepts of the domain-
independent ontology of ArchiMate.

Design Options of Store-Oriented Software Ecosystems 67

The mapping of concepts is done based on the closeness of their semantic
description of elements from both ontologies. For instance, the stakeholders of
the software ecosystems, i.e., Platform Provider, Trusted Partner, Independent
Developer and User in a very abstract way can be described as actors who
perform numerous activities and have some responsibility towards the ecosystem.
A Business Actor is capable of doing some action and has some responsibility.
Hence, we can conclude that an ecosystem’s stakeholders can be mapped to the
Business Actor modeling element of ArchiMate.

4.2 Identifying Missing Concepts for Designing Software
Ecosystems

Mapping of the elements explained in the previous section results in identifying
different sources of challenges that makes modeling software ecosystems using
the Archimate language complicated. We categorize these challenges into three
groups as listed in Table 1. In the following, we discuss them.

e Overload: It defines the situation, where the source concepts can be mapped
to more than one destination concept. For instance, the software ecosystem
concept platform refers to the software application, which third-party devel-
opers extend. This software application can be a web-based, a stand-alone
application, or an operating system. A platform that is an operating system
can be modeled using System Software whereas, in the other two cases of a
stand-alone application and web-based application, it can be modeled using
Application Component modeling element of ArchiMate. We have addressed
this ambiguity by introducing a new modeling element, i.e., Platform with
an additional attribute to describe the type of technological platform. The
Type attribute can have three possible values to represent the category of
the platform, i.e. Operating System, Web-based Application and Stand-alone
Application.

e Redundancy: It describes a situation when more than one source concept
can be mapped to one destination concept. Apart from these outcomes, we
found that the mapped ArchiMate concept’s definition is too abstract to
describe the software ecosystem concept and requires more expressiveness.
For instance, there can be two types of third-party developers, i.e., Trusted
Partners and Independent Developers depending on the type of collabora-
tive commitment they have with the platform provider. To model such a
stakeholder of an ecosystem, the modeling element needs additional informa-
tion about their contractual agreement with the platform provider and their
responsibilities within the ecosystem.

e Deficiency: It concerns the situation in which the source concept can not be
mapped to any of the destination concepts. For instance, after carefully going
through the semantic description of every ArchiMate element from its spec-
ification [21], we found out that no modeling element can be used to model
the organizational setting, i.e., Context of an ecosystem. To address this defi-
ciency, we added a new element Context with additional attributes Domain

68 S. K. Gupta et al.

Criticality, Target Market, and Commerciality to model the organizational
setting of a software ecosystem.

As a result of the mapping, we conclude that the third-party developers
could be modeled using the Business Actor modeling element of ArchiMate. The
primary drawback of representing a Third-party developer using Business Actor
is that the Business Actor fails to express the contractual agreement Third-party
developers have with the platform provider. Since ArchiMate does not provide
any attribute to describe additional information about Business Actor, a new
element is needed to describe the required information.

Table 1. Three groups of missing concepts in Archimate

Ecosystem-Specific Archimate
Concepts Concepts
System Software
Platform
Overload Application Component
Concepts Capability
Openness
Constraint
Trusted Partner
Business Actor
Independent Developer
Rating
Redundancy Ranking Application Process
of Concepts Reviewing
Technological Boundary
Resources
Resource
Social Boundary
Resources
Deficiency of _
Concepts Context (No match is found.)

4.3 Extending ArchiMate

Domain-specific concepts in meta-model-based enterprise architecture modeling
language such as ArchiMate can be introduced through language extension, also
termed as language re-use mechanism. It provides two extension mechanisms
to facilitate language customization to add domain-specific concepts, namely,
adding attributes and specialization.

The first extension mechanism allows users to attach additional informa-
tion to the modeling elements using attributes either when modeling or initially

Design Options of Store-Oriented Software Ecosystems 69

configuring the modeling tool. On the other hand, using specialization enables
the addition of specialized elements of the existing modeling elements and rela-
tionships through inheritance. Specialization of generalized concepts (elements
and relationships) provides modelers extra freedom to define domain-specific
concepts without manipulating the language’s core concepts. It also enables
the analysis and visualization procedures applicable to the core concepts to be
applied to the specialized concepts too [21].

ArchiMate language and its concepts are defined through meta-models using
a meta-modeling approach [22]. The meta-modeling approach of designing a
modeling language involves defining its abstract and concrete syntax using meta-
models [22]. A meta-model defines the concepts and their attributes, relation-
ships between the concepts, and the rules and constraints to unite the concepts
and relationships to design a model. In a graphical modeling language such as
ArchiMate, a meta-model helps a modeling language define its abstract syntax
by specifying modeling elements such as concepts, relations, and constraints.
Additionally, the ArchiMate framework defines a graphical representation for
every element and relationship in its initial meta-model, which belongs to its
concrete syntax [22].

Figure 2 shows the domain-specific concepts of the software ecosystem with
respective graphical notations which we have identified. Out of these concepts, we
have added attributes to a few of them. For instance, the new modeling element
to express the Revenue Generation System, we attached additional information
regarding the source of revenue using four attributes, each capturing Platform
Fee, Service Fee, Entrance Fee and Donation.

Platform Revenue Generation System Rating Reviewing
[®
+ type: String + entranceFee: String Ranking Store
+ serviceFee: String - E
Third-Party Developer + platformFee: String
+ donation: String Social Boundary
_______________________ Resources
+ category: String Context
Openness m _______________)
% + targetMarket: String Technical Boundary
. Resources
+ commerciality: boolean —
""" +open: String || + domainCriticality: boolean <>

Fig. 2. Identified concepts specific to software ecosystem domain

To implement the extension of the ArchiMate language, we choose the Archi
tool. Archi is an open-source graphical modeling tool based on the ArchiMate

70 S. K. Gupta et al.

framework. In the Archi tool, the ArchiMate framework’s meta-model is defined
using Eclipse Modeling Framework’ Ecore language. Ecore is used to describe
models and provide runtime support for models, including change notifications,
persistence support, APIs for manipulating EMF objects [23].

We add the identified software ecosystem concepts by extending the initial
meta-model of the ArchiMate framework. We create specialized classes for each
of the identified domain-specific concepts. In addition, additional attributes are
added for Revenue Generation System, Context, Third-party Developer, Plat-
form and Openness. Moreover, we develop a plugin to facilitate future platform
providers in generating a pre-designed software ecosystem model based on our
reference architecture. The implemented plug-in can be found on our Git repos-
itory.

5 Case Study: F-Droid

To demonstrate the application of the reference architecture to create a concrete
ecosystem architecture in practice, we used the F-Droid ecosystem as our case
study. F-Droid Limited is a UK “private company” that provides an ecosystem
around Google’s Android mobile operating system and provides Free and Open
Source Software (FOSS) applications to the Android users®. We imagined a sce-
nario where F-Droid wants to create an ecosystem using our software ecosystem
reference architecture.

As a future platform provider, F-Droid can use the extended ArchiMate and
developed utility to create the architecture of its software ecosystem by using
the reference architecture as a base and make changes as per their requirement.
As shown in Fig. 3, FOSS Community Developers and their consultants named
COTECH and IzzySoft extends the Android platform and develop end-user
applications which are further published on F-Droid store. To extend the Android
platform, F-Droid provides Technological Boundary Resources tools aggregated
with Android Studio, Testing Suit as an instance of Technological Boundary
Resources and Android APIs as an instance of Application Interface. Addition-
ally, it provides Social Boundary Resources aggregated with F-Droid Docs as
an instance of type Artifact, F-Droid Forum, Repositories (Client, Server, Data,
Website) and F-Droid FAQs as an instance of type Social Boundary Resources.

Furthermore, F-Droid manages ecosystem’s business processes named Sup-
port & Services which is aggregated with instances of type capability named
Consultancy Services and Support through Email (team@f-droid.org), Commu-
nity Building aggregated with instances of type social boundary resources of
social network activities on platforms named Fediverse, Matriz, Freenode and
F-Droid Forum, Contract Management aggregated with instances of type con-
tract named Inclusion Policy and Terms of Service, generating revenue through
instance of type revenue generation system named Donation via OpenCollective,

* https://git.cs.uni-paderborn.de/bahareh/SecoArc_Runtime, Last Access: 1 June
2021.
5 https://f-droid.org/en/about/, Last Access: 1 June 2021.

https://git.cs.uni-paderborn.de/bahareh/SecoArc_Runtime
https://f-droid.org/en/about/

Design Options of Store-Oriented Software Ecosystems 71

knowledge sharing is done through F-Droid Docs which is an instance of type
artifact.

Vision of the ecosystem is a set, i.e., “provide free and open source (FOSS)
software for the Android platform users”, which also influences its health driven
by Productivity, Robustness and Niche Creation. F-Droid models the Context
of its ecosystem by setting the attributes of modeling instance of element type
Context as false for Domain Criticality, false for Commerciality since all the
applications on F-Droid repository are free and open source, and Targeted Market
as “develop end-user applications for Android portable device users”.

Context of an ecosystem influences the Organizational Management of an
ecosystem done by the F-Droid as a platform provider. Organizational Man-
agement aggregates various capabilities such as R&D, Orchestration, License
Management, Security, and Communication & Coordination. The capability of
License Management further have access relationship with instances of type con-
tract named CC BY-NC-SA 3.0 for user contribution, GNU Public License for
applications and GNU Free Documentation License for documentations. The
capability of Security aggregates Security Model